Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
J Am Chem Soc ; 146(19): 13391-13398, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691098

RESUMO

Inverted p-i-n perovskite solar cells (PSCs) are easy to process but need improved interface characteristics with reduced energy loss to prevent efficiency drops when increasing the active photovoltaic area. Here, we report a series of poly ferrocenyl molecules that can modulate the perovskite surface enabling the construction of small- and large-area PSCs. We found that the perovskite-ferrocenyl interaction forms a hybrid complex with enhanced surface coordination strength and activated electronic states, leading to lower interfacial nonradiative recombination and charge transport resistance losses. The resulting PSCs achieve an enhanced efficiency of up to 26.08% for small-area devices and 24.51% for large-area devices (1.0208 cm2). Moreover, the large-area PSCs maintain >92% of the initial efficiency after 2000 h of continuous operation at the maximum power point under 1-sun illumination and 65 °C.

2.
Phys Chem Chem Phys ; 26(10): 8273-8286, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38385562

RESUMO

Organic radicals exhibiting SOMO-HOMO conversion (SHC) electronic configurations have recently garnered increasing attention due to their exceptional stability and photophysical properties. In this study, we investigate two series of phosphorus-boron cation radicals based on 1,3,5-trimethylphenyl units substituted with P and B atoms, varying numbers of P-B moieties, and π-conjugation linkers. We perform quantum-chemical calculations to systematically assess the influence of chemical substituents on the SHC electronic structural features. Our computational results demonstrate that the SHC electronic configurations of the studied complexes are primarily determined by the number of P-B moieties, specifically, phosphorus-boron cation radicals with two P-B moieties as terminal groups in π-conjugation linkers, which efficiently arrange electrons to increase HOMO energies compared to corresponding radicals with only one P-B unit. Furthermore, spin density distributions change as the size of π-conjugation linkers increases. Natural bond orbital (NBO) and atoms-in-molecules (AIM) analyses reveal strong intramolecular charge transfer between P and B atoms along with other stabilized donor-acceptor interactions and significant covalent bonds between P and B atoms. Moreover, synergistic effects resulting from 1,3,5-trimethylphenyl substitutions and enlarged π-conjugation linkers containing P-B units confer excellent photophysical properties upon these studied radicals, making them potential stable radicals in optoelectronic applications.

3.
Small ; : e2309827, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084461

RESUMO

Solution-processed photodetectors have emerged as promising candidates for next-generation of visible-near infrared (vis-NIR) photodetectors. This is attributed to their ease of processing, compatibility with flexible substrates, and the ability to tune their detection properties by integrating complementary photoresponsive semiconductors. However, the limited performance continues to hinder their further development, primarily influenced by the difference of charge transport properties between perovskite and organic semiconductors. In this work, a perovskite-organic bipolar photodetectors (PDs) is introduced with multispectral responsivity, achieved by effectively managing charges in perovskite and a ternary organic heterojunction. The ternary heterojunction, incorporating a designed NIR guest acceptor, exhibits a faster charge transfer rate and longer carrier diffusion length than the binary heterojunction. By achieving a more balanced carrier dynamic between the perovskite and organic components, the PD achieves a low dark current of 3.74 nA cm-2 at -0.2 V, a fast response speed of <10 µs, and a detectivity of exceeding 1012 Jones. Furthermore, a bioinspired retinotopic system for spontaneous chromatic adaptation is achieved without any optical filter. This charge management strategy opens up possibilities for surpassing the limitations of photodetection and enables the realization of high-purity, compact image sensors with exceptional spatial resolution and accurate color reproduction.

4.
J Virol ; 95(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328305

RESUMO

African swine fever virus (ASFV) is one of the most contagious and lethal viruses infecting pigs. This virus is endemic in many countries and has very recently spread to China, but no licensed vaccines or treatments are currently available. Despite extensive research, the basic question of how ASFV-encoded proteins inhibit host translation remains. Here, we examined how ASFV interfered with host translation and optimized viral gene expression. We found that 14 ASFV proteins inhibited Renilla luciferase (Rluc) activity greater than 5-fold, and the protein with the strongest inhibitory effect was pE66L, which was not previously reported. Combined with bioinformatical analysis and biochemical experiment, we determined that the transmembrane (TM) domain (amino acids 13-34) of pE66L was required for the inhibition of host gene expression. Notably, we constructed a recombinant plasmid with the TM domain linked to enhanced green fluorescent protein (EGFP) and further demonstrated that this domain broadly inhibited protein synthesis. Confocal and biochemical analyses indicated that the TM domain might help proteins locate to the endoplasmic reticulum (ER) to suppress translation though the PKR/eIF2α pathway. Deletion of the E66L gene had little effect on virus replication in macrophages, but significantly recovered host gene expression. Taken together, our findings complement studies on the host translation of ASFV proteins and suggest that ASFV pE66L induces host translation shutoff, which is dependent on activation of the PKR/eIF2α pathway.Importance African swine fever virus (ASFV) is a member of the nucleocytoplasmic large DNA virus superfamily that predominantly replicates in the cytoplasm of infected cells. The ASFV double-stranded DNA genome varies in length from approximately 170 to 193 kbp depending on the isolate and contains between 150 and 167 open reading frames (ORFs), of which half the encoded proteins have not been explored. Our study showed that 14 proteins had an obvious inhibitory effect on Renilla luciferase (Rluc) gene synthesis, with pE66L showing the most significant effect. Furthermore, the transmembrane (TM) domain of pE66L broadly inhibited host protein synthesis in a PKR/eIF2a pathway-dependent manner. Loss of pE66L during ASFV infection had little effect on virus replication, but significantly recovered host protein synthetic. Based on the above results, our findings expand our view of ASFV in determining the fate of host-pathogen interactions.

5.
J Virol ; 95(23): e0119921, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34495696

RESUMO

African swine fever (ASF) is a severe hemorrhagic infectious disease in pigs caused by African swine fever virus (ASFV), leading to devastating economic losses in epidemic regions. Its control currently depends on thorough culling and clearance of the diseased and surrounding suspected pigs. An ASF vaccine has been extensively explored for years worldwide, especially in hog-intensive areas where it is highly desired, but it is still unavailable for numerous reasons. Here, we report another ASF vaccine candidate, named SY18ΔI226R, bearing a deletion of the I226R gene with a replacement of an enhanced green fluorescent protein (eGFP) expression cassette at the right end of the viral genome. This deletion results in the complete loss of virulence of SY18 as the gene-deleted strain does not cause any clinical symptoms in all pigs inoculated with a dosage of either 104.0 or 107.0 50% tissue culture infective doses (TCID50). Apparent viremia with a gradual decline was monitored, while virus shedding was detected only occasionally in oral or anal swabs. ASFV-specific antibody appeared at 9 days postinoculation. After intramuscular challenge with its parental strain ASFV SY18 at 21 days postinoculation, all the challenged pigs survived, without obvious febrile or abnormal clinical signs. No viral DNA could be detected upon the dissection of any tissue when viremia disappeared. These results indicated that SY18ΔI226R is safe in swine and elicits robust immunity to virulent ASFV infection. IMPORTANCE Outbreaks of African swine fever have resulted in devastating losses to the swine industry worldwide, but there is currently no commercial vaccine available. Although several vaccine candidates have been reported, none has been approved for use for several reasons, especially ones concerning biosafety. Here, we identified a new undescribed functional gene, I226R. When deleted from the ASFV genome, the virus completely loses its virulence in swine. Importantly, pigs infected with this gene-deleted virus were resistant to infection by intramuscular challenge with 102.5 or 104.0 TCID50 of its virulent parental virus. Furthermore, the nucleic acid of the gene-deleted virus and its virulent parental virus was rarely detected from oral or anal swabs. Viruses could not be detected in any tissues after necropsy when viremia became negative, indicating that robust immunity was achieved. Therefore, SY18ΔI226R is a novel, ideal, and efficacious vaccine candidate for genotype II ASF.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/imunologia , Deleção de Genes , Genoma Viral , Febre Suína Africana/patologia , Febre Suína Africana/prevenção & controle , Animais , DNA Viral , Genes Virais/genética , Genótipo , Análise de Sequência , Suínos , Vacinas Virais/imunologia , Viremia/genética , Virulência/genética
6.
Phys Chem Chem Phys ; 24(43): 26795-26801, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36314530

RESUMO

Quantum interference (QI) has been identified as a promising strategy for designing molecular-scale electronic devices. Heteroatom doping can effectively tailor the local structures and electronic states of intrinsic molecules, and endow them with modified electron transport properties. Herein, the impacts of multiple heteroatom substitution on destructive quantum interference (DQI) have been investigated based on tripodal meta-linked phenyl derivatives. Orbital views based on the Hückel method qualitatively predict the meta-anchored molecules with DQI features, while the introduction of nitrogen atoms can alleviate the suppression of DQI at the Fermi level (EF). This is generally consistent with the movement or even removal of the antiresonance dips in transmission spectra. The substituent on position 2 can raise the antiresonance energy, while the substituent on position 4 or 6 can lower the antiresonance energy. When more than one nitrogen atom is incorporated, the impact of the substitution on positions 4 and 6 can be superimposed and the substitution on positions 2 and 4 can be partly cancelled. The experimental single-molecule conductance for tripodal molecules follows the trend of 0N-3SMe < 1N-3SMe < 3N-3SMe < 2N-3SMe, in agreement with the theoretical prediction. Additionally, the regulation is the intrinsic property depending on the position and number of the nitrogen atoms in the backbone and is irrelevant to the number and type of the anchoring groups. Our findings provide qualitative guidance for tuning the electron transport based on DQI in heterocycle molecular devices.

7.
J Infect Dis ; 222(2): 203-205, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32427340

RESUMO

The detection of SARS-CoV-2 infection is the premise of quarantine. In many countries or areas, samples need to be shipped or inactivated before SARS-CoV-2 testing. In this study, we checked the influence of sample storage conditions on SARS-CoV-2 nucleic acid testing results, including sample inactivation time, storage temperature, and storage time. All of these conditions caused an increase in the cycle threshold values of the nucleic acid tests and led to the misclassification of at least 10.2% of positive cases as negative or suspected. The results highlight the importance of immediate testing of samples for SARS-CoV-2 nucleic acid detection.


Assuntos
Betacoronavirus , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Faringe/virologia , Pneumonia Viral/diagnóstico , Manejo de Espécimes/métodos , Betacoronavirus/genética , COVID-19 , Teste para COVID-19 , Criopreservação , Congelamento , Humanos , Pandemias , Refrigeração , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Temperatura , Fatores de Tempo , Inativação de Vírus
8.
Emerg Infect Dis ; 26(7): 1583-1591, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32275497

RESUMO

To determine distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards in Wuhan, China, we tested air and surface samples. Contamination was greater in intensive care units than general wards. Virus was widely distributed on floors, computer mice, trash cans, and sickbed handrails and was detected in air ≈4 m from patients.


Assuntos
Microbiologia do Ar , Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/transmissão , Pneumonia Viral/transmissão , Aerossóis , COVID-19 , Hospitais , Humanos , Unidades de Terapia Intensiva , Pandemias , SARS-CoV-2
9.
Phys Chem Chem Phys ; 21(6): 3044-3058, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30672532

RESUMO

It is very important to analyse the most advantageous connection style for quinoidal thiophene derivatives, which are used in n-type organic semiconductor transport materials. In the present work, the charge transport properties of three series of quinoidal thiophene derivatives, oligothiophene (series A), thienothiophene (series B) and benzothiophene (series C), are systematically investigated by employing full quantum charge transfer theory combined with kinetic Monte-Carlo simulation. The single crystal structures of the molecules we had constructed were predicted using the USPEX program combined with density functional theory (DFT) and considering the dispersion corrected. Our theoretical results expounded how the different connection styles, including oligo-, thieno-, and benzo-thiophene in the quinoidal thiophenes derivatives, effectively tune their electronic structures, and revealed how their intermolecular interactions affect the molecular packing patterns and hence their charge transport properties by symmetry-adapted perturbation theory (SAPT). In the meantime we also elucidated the role of end-cyano groups in noncovalent interactions. Furthermore, it is clarified that quinoidal thiophene derivatives show excellent carrier transport properties due to their optimal molecular stacking motifs and larger electronic couplings besides their low energy gap. In addition, our theoretical results demonstrate that quinoidal oligothiophene derivatives (n = 3-5) with more thiophene rings will have ambipolar transport properties, so quinoidal thienothiophene and benzothiophene derivatives should be promising alternatives as n-type OSCs. When we focused only on the electronic transport properties in the three series of molecules, quinoidal benzothiophene derivatives were slightly better than quinoidal oligothiophene or thienothiophene derivatives.

10.
J Phys Chem A ; 123(15): 3300-3314, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30900901

RESUMO

To obtain anthracene-based derivatives with electron transport behavior, two series of anthracene-based derivatives modified by trifluoromethyl groups (-CF3) and cyano groups (-CN) at the 9,10-positions of the anthracene core were studied. Their electronic structures and crystal packings were also analyzed and compared. The charge-carrier mobilities were evaluated by quantum nuclear tunneling theory based on the incoherent charge-hopping model. Our results suggest that introducing -CN groups at 9,10-positions of the anthracene core is more favorable than introducing -CF3 to maintain great planar rigidity of the anthracene skeleton, decreasing more lowest unoccupied molecular orbital energy levels (0.45-0.55 eV), reducing reorganization energies, and especially forming a tight packing motif. Eventually, the excellent electron transport materials could be obtained. The molecule 1-B in Series 1 containing -CF3 groups is an ambipolar organic semiconductor (OSC) material with a 2D transport network, and its value of µh-max/µe-max is 1.75/0.47 cm2 V-1 s-1 along different directions; 2-A and 2-C in Series 2 with -CN groups are excellent n-type OSC candidates with the maximum intrinsic mobilities of 3.74 and 2.69 cm2 V-1 s-1 along the π-π stacking direction, respectively. Besides, the Hirshfeld surface and quantum theory of atoms in molecules analyses were applied to reveal the relationship between noncovalent interactions and crystal stacking.

11.
Biochem Biophys Res Commun ; 506(3): 437-443, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30348523

RESUMO

African swine fever virus (ASFV) is a highly pathogenic large DNA virus that causes African swine fever (ASF) in domestic pigs and European wild boars with mortality rate up to 100%. The DP96R gene of ASFV encodes one of the viral virulence factors, yet its action mechanism remains unknown. In this study, we report that DP96R of ASFV China 2018/1 strain subverts type I IFN production in cGAS sensing pathway. DP96R inhibited the cGAS/STING, and TBK1 but not IRF3-5D mediated IFN-ß and ISRE promoters activation. Furthermore, DP96R selectively blocked the activation of NF-κB promoter induced by cGAS/STING, TBK1, and IKKß, but not by overexpression of p65. Moreover, DP96R inhibited phosphorylation of TBK1 stimulated by cGAS/STING activation, and TBK1-induced antiviral response. Finally, truncated mutation analysis demonstrated that the region spanning amino acids 30 to 96 of DP96R was responsible for the inhibitory activity. To our knowledge, this is for the first time that DP96R of ASFV China 2018/1 is reported to negatively regulate type I IFN expression and NF-κB signaling by inhibiting both TBK1 and IKKß, which plays an important role in virus immune evasion.


Assuntos
Vírus da Febre Suína Africana/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Virais/metabolismo , Vírus da Febre Suína Africana/genética , Animais , Genes Virais , Células HEK293 , Humanos , Interferon beta/metabolismo , NF-kappa B/metabolismo , Fosforilação , Domínios Proteicos , Proteínas Virais/química
12.
Phys Chem Chem Phys ; 20(5): 3784-3794, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29349447

RESUMO

2,5-Difluoro-7,7,8,8-tetracyanoquinodimethane (F2-TCNQ) was recently reported to display excellent electron transport properties in single crystal field-effect transistors (FETs). Its carrier mobility can reach 25 cm2 V-1 s-1 in devices. However, its counterparts TCNQ and F4-TCNQ (tetrafluoro-7,7,8,8-tetracyanoquinodimethane) do not exhibit the same highly efficient behavior. To better understand this significant difference in charge carrier mobility, a multiscale approach combining semiclassical Marcus hopping theory, a quantum nuclear enabled hopping model and molecular dynamics simulations was performed to assess the electron mobilities of the Fn-TCNQ (n = 0, 2, 4) systems in this work. The results indicated that the outstanding electron transport behavior of F2-TCNQ arises from its effective 3D charge carrier percolation network due to its special packing motif and the nuclear tunneling effect. Moreover, the poor transport properties of TCNQ and F4-TCNQ stem from their invalid packing and strong thermal disorder. It was found that Marcus theory underestimated the mobilities for all the systems, while the quantum model with the nuclear tunneling effect provided reasonable results compared to experiments. Moreover, the band-like transport behavior of F2-TCNQ was well described by the quantum nuclear enabled hopping model. In addition, quantum theory of atoms in molecules (QTAIM) analysis and symmetry-adapted perturbation theory (SAPT) were used to characterize the intermolecular interactions in TCNQ, F2-TCNQ and F4-TCNQ crystals. A primary understanding of various noncovalent interaction responses for crystal formation is crucial to understand the structure-property relationships in organic molecular materials.

13.
Arch Virol ; 162(1): 247-257, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27722994

RESUMO

Rabies is a lethal neurological disease caused by the neurotropic rabies virus (RABV). To investigate the innate immune response in the brain during rabies infection, key gene transcripts indicative of innate immunity in a mouse model system were measured using real-time RT-PCR. Mice were infected via the intracerebral or intramuscular route with either attenuated rabies virus (SRV9) or pathogenic rabies virus (BD06). Infection with SRV9 resulted in the early detection of viral replication and the rapid induction of innate immune response gene expression in the brain. BD06 infection elicited innate immune response gene expression during only the late stage of infection. We measured Na-fluorescein uptake to assess blood-brain barrier (BBB) permeability, which was enhanced during the early stage of SRV9 infection and significantly enhanced during the late stage of BD06 infection. Furthermore, early SRV9 replication increased the maturation and differentiation of dendritic cells (DCs) and B cells in the inguinal lymph nodes and initiated the generation of virus-neutralizing antibodies (VNAs), which cooperate with the innate immune response to eliminate virus from the CNS. However, BD06 infection did not stimulate VNA production; thus, the virus was able to evade the host immune response and cause encephalitis. The rabies virus phosphoprotein has been reported to counteract IFN activation. In an in vitro study of the relationship between IFN antagonism and RABV pathogenicity, we demonstrated that SRV9 more strongly antagonized IFN activity than did BD06. Therefore, there is no positive relationship between the IFN antagonist activity of the virus and its pathogenicity.


Assuntos
Encéfalo/patologia , Imunidade Inata , Vacina Antirrábica/administração & dosagem , Vacina Antirrábica/imunologia , Vírus da Raiva/imunologia , Raiva/patologia , Animais , Barreira Hematoencefálica , Diferenciação Celular , Células Dendríticas/imunologia , Células Dendríticas/fisiologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Evasão da Resposta Imune , Injeções Intramusculares , Interferons/antagonistas & inibidores , Linfonodos/imunologia , Camundongos Endogâmicos BALB C , Permeabilidade , Reação em Cadeia da Polimerase em Tempo Real
14.
Phys Chem Chem Phys ; 19(21): 13978-13993, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28516987

RESUMO

A theoretical study was carried out to investigate the electronic structures and the charge transport properties of a series of naphthodithiophene diimide (NDTI) thiophene α-substituted derivatives NDTI-X using density functional theory and classical Marcus charge transfer theory. This study deeply revealed the structure-property relationships by analyzing the intermolecular interactions in crystal structures of C8-NDTI and C8-NDTI-Cl thoroughly by using the Hirshfeld surface, QTAIM theories and symmetry-adapted perturbation theory (SAPT). Our results suggested that a 2-D brick-like π-stacking structure makes C8-NDTI-Cl a more excellent n-type semiconducting material with µmax-e of 2.554 cm2 V-1 s-1 than C8-NDTI with a herringbone-like slipped π-stacking motif. In addition, the calculated results showed that by modifying the thiophene α-positions of NDTI with electron-withdrawing substituents, -F, -Cl and -CN, low-lying LUMO energy levels and a high adiabatic electron affinity EA(a) can be obtained; while introducing electron-donating groups, benzene (-B), thiophene (-T), benzo[b]thiophene (-BT) and naphtha[2,3-b]thiophene (-NT), expanded the molecular π-conjugated backbone, and narrow band gaps, high EA(a) and small reorganization energies can be obtained. Theoretical simulations predict that NDTI-CN is an excellent air-stable n-type organic semiconducting material with an average electron mobility µe of up to 1.743 cm2 V-1 s-1. Owing to their high EA(a), moderate adiabatic ionization potential IP(a) as well as small hole and electron reorganization energies, NDTI-BT and NDTI-NT are two well-balanced air-stable ambipolar semiconducting materials. The theoretical average hole/electron mobilities are as high as 2.708/3.739 cm2 V-1 s-1 for C8-NDTI-NT and 1.597/2.350 cm2 V-1 s-1 for C8-NDTI-BT, respectively.

15.
Arch Virol ; 161(2): 445-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26563317

RESUMO

Pseudorabies (PR, Aujeszky's disease) is an acute, highly contagious viral disease resulting in major economic losses to the swine industry. PR is endemic in wild and domestic animals, although its natural host is the pig. Here, we report an outbreak of PR in foxes on a fur-producing farm in Yuncheng county, Shandong, China, that were fed pig offal. The diagnosis of PR was based on nervous signs and standard PCR methods and by isolation of PRV from fox brain tissue in Vero cells. The diagnosis was confirmed by an indirect immunofluorescence assay and electron microscopy. Phylogenetic analysis of a partial (804 nt) viral glycoprotein gC gene sequence indicated that it was likely to be a field strain closely related to a cluster of PRV previously identified in China.


Assuntos
Surtos de Doenças , Raposas/virologia , Pseudorraiva/epidemiologia , Ração Animal , Animais , Composição de Bases , China/epidemiologia , Chlorocebus aethiops , Análise por Conglomerados , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/isolamento & purificação , Herpesvirus Suídeo 1/ultraestrutura , Microscopia Eletrônica de Transmissão , Filogenia , Reação em Cadeia da Polimerase , Pseudorraiva/patologia , Pseudorraiva/virologia , Análise de Sequência de DNA , Suínos , Células Vero , Proteínas do Envelope Viral/genética , Cultura de Vírus
16.
Arch Virol ; 161(2): 495-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26573525

RESUMO

Mammalian orthoreoviruses (MRVs) are widespread and infect virtually all mammals. We report here the first case of a natural mutant and reassortant serotype 3 reovirus from mink in China, known as MRV3 SD-14. Whole-genome sequence analysis showed that the MRV3 SD-14 may have resulted from a reassortment involving MRVs that infected swine, humans and mink. Interestingly, the S1 segment, which encodes the viral attachment protein σ1, which influences viral virulence and cell tropism in the host, had a stop codon mutation at amino acid 246. Surveillance of the virulence and evolution of MRVs in humans and other animals deserves more attention.


Assuntos
Genoma Viral , Orthoreovirus Mamífero 3/classificação , Orthoreovirus Mamífero 3/genética , Vison/virologia , RNA Viral/genética , Vírus Reordenados/classificação , Vírus Reordenados/genética , Animais , China , Códon sem Sentido , Humanos , Dados de Sequência Molecular , Análise de Sequência de DNA , Suínos , Proteínas do Envelope Viral/genética
17.
J Phys Chem A ; 120(15): 2390-400, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27027319

RESUMO

A series of pentacene derivatives, halogen-substituted and thiophene- and pyridine-substituted, have been studied with a focus on the electronic properties and charge transport properties using density functional theory and classical Marcus charge-transfer theory. The transport properties of holes and electrons have been studied to get insight into the effect of halogenation and heteroatom substitution on transport and injection of charge carriers. The calculation results revealed that fluorination and chlorination can effectively lower the lowest unoccupied molecular orbital (LUMO) level, modulate the hole and electron reorganization energy, improve the stacking mode of the crystal structure, and enhance the ambipolar characteristic. Chlorination gives a better ambipolar characteristic. On the basis of halogen substitution, the substitution of terminal benzene ring of triisopropyl-silylethynyl-pentacene (TIPS-PEN) by a thiophene or pyridine will greatly lower the LUMO level and improve the stacking mode, leading to more suitable ambipolar materials. Hence, both intra- and extra-ring substitution are favorable to enhance the ambipolar transport property of TIPS-PEN.

18.
Fish Shellfish Immunol ; 44(2): 399-409, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25770871

RESUMO

Toll-like receptor 22 (TLR22) exists exclusively in aquatic animals and recognizes double stranded RNA (dsRNA). In the present study, a tlr22 gene and its 5'-flanking sequence were cloned from turbot, Scophthalmus maximus, its immune responsive expression was subsequently studied in vivo. The turbot (sm)tlr22 gene spans over 5.6 kb with a structure of 4 exon-3 intron and encodes 962 amino acids. The deduced protein shows the highest sequence identity (76.7%) to Japanese flounder Tlr22 and possesses a signal peptide sequence, a leucine-rich repeat (LRR) domain composed of 27 LRR motifs, a transmembrane region and a Toll/interleukin-1 receptor (TIR) domain. Phylogenetic analysis grouped it with other teleost Tlr22s. The interferon-stimulated response element (ISRE) and signal transducer and activator of transcription (STAT) binding site important for the basal transcriptional activity of TLR3 were predicted in the 5'-flanking sequence of smtlr22 gene. Quantitative real-time PCR (qPCR) analysis demonstrated the constitutive expression of smtlr22 mRNA in all examined tissues with higher levels in the head kidney, kidney and spleen. Further, smtlr22 expression was significantly up-regulated following challenge with polyinosinic: polycytidylic acid (poly I:C), lipopolysaccharide (LPS) or turbot reddish body iridovirus (TRBIV) in the gills, head kidney, spleen and muscle, with maximum increases ranging from 2.56 to 6.24 fold upon different immunostimulants and organs. These findings suggest a possible role of Smtlr22 in the immune responses to the infections of a broad range of pathogens that include DNA and RNA viruses and Gram-negative bacteria.


Assuntos
Linguados/genética , Linguados/imunologia , Regulação da Expressão Gênica/fisiologia , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Animais , Sequência de Bases , Clonagem Molecular , Componentes do Gene , Perfilação da Expressão Gênica , Brânquias/virologia , Iridovirus , Lipopolissacarídeos , Dados de Sequência Molecular , Filogenia , Poli I-C , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Homologia de Sequência
19.
Arch Virol ; 160(9): 2315-23, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26143474

RESUMO

The rabies virus (RABV) glycoprotein (G) is responsible for inducing neutralizing antibodies against rabies virus. Development of recombinant vaccines using the G genes from attenuated strains rather than street viruses is a regular practice. In contrast to this scenario, we generated three human adenovirus type 5 recombinants using the G genes from the vaccine strains SRV9 and Flury-LEP, and the street RABV strain BD06 (nrAd5-SRV9-G, nrAd5-Flury-LEP-G, and nrAd5-BD06-G). These recombinants were non-replicative, but could grow up to ~10(8) TCID50/ml in helper HEK293AD cells. Expression of the G protein was verified by immunostaining, quantitative PCR and cytometry. Animal experiments revealed that immunization with nrAd5-BD06-G can induce a higher seroconversion rate, a higher neutralizing antibody level, and a longer survival time after rabies virus challenge in mice when compared with the other two recombinants. Moreover, the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) was significantly higher in mice immunized with nrAd5-BD06-G, which might also contribute to the increased protection. These results show that the use of street RABV G for non-replicative systems may be an alternative for developing effective recombinant rabies vaccines.


Assuntos
Adenovírus Humanos/genética , Antígenos Virais/imunologia , Portadores de Fármacos , Vetores Genéticos , Glicoproteínas/imunologia , Vacina Antirrábica/imunologia , Vírus da Raiva/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Feminino , Glicoproteínas/genética , Camundongos , Vacina Antirrábica/administração & dosagem , Vacina Antirrábica/genética , Vírus da Raiva/genética , Análise de Sobrevida , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética
20.
Arch Virol ; 160(7): 1797-800, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25976558

RESUMO

We describe the isolation and complete genome sequence of a new calicivirus, FBCV-JX12, isolated from a ferret badger (Melogale moschata). Comparison of FBCV-JX12 with other vesiviruses revealed that it shared the highest amino acid sequence identities of 71.6, 60.5, and 59.3% in the nonstructural protein, VP1, and VP2, respectively, with MCV-DL2007 (mink calicivirus). Phylogenetic analysis of the whole genomic sequence showed that it clustered most closely with MCV-DL2007 of the genus Vesivirus, but with low nucleotide similarity in the three open reading frames (62.1-68.5%).


Assuntos
Infecções por Caliciviridae/veterinária , Caliciviridae/classificação , Caliciviridae/isolamento & purificação , Furões/virologia , Animais , Sequência de Bases , Caliciviridae/genética , Infecções por Caliciviridae/virologia , China , Genoma Viral , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA