RESUMO
The discovery and application of genome editing introduced a new era of plant breeding by giving researchers efficient tools for the precise engineering of crop genomes1. Here we demonstrate the power of genome editing for engineering broad-spectrum disease resistance in rice (Oryza sativa). We first isolated a lesion mimic mutant (LMM) from a mutagenized rice population. We then demonstrated that a 29-base-pair deletion in a gene we named RESISTANCE TO BLAST1 (RBL1) caused broad-spectrum disease resistance and showed that this mutation caused an approximately 20-fold reduction in yield. RBL1 encodes a cytidine diphosphate diacylglycerol synthase that is required for phospholipid biosynthesis2. Mutation of RBL1 results in reduced levels of phosphatidylinositol and its derivative phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). In rice, PtdIns(4,5)P2 is enriched in cellular structures that are specifically associated with effector secretion and fungal infection, suggesting that it has a role as a disease-susceptibility factor3. By using targeted genome editing, we obtained an allele of RBL1, named RBL1Δ12, which confers broad-spectrum disease resistance but does not decrease yield in a model rice variety, as assessed in small-scale field trials. Our study has demonstrated the benefits of editing an LMM gene, a strategy relevant to diverse LMM genes and crops.
Assuntos
Diacilglicerol Colinofosfotransferase , Resistência à Doença , Edição de Genes , Oryza , Melhoramento Vegetal , Doenças das Plantas , Resistência à Doença/genética , Edição de Genes/métodos , Genoma de Planta/genética , Oryza/enzimologia , Oryza/genética , Oryza/microbiologia , Fosfatidilinositóis/metabolismo , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Alelos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Diacilglicerol Colinofosfotransferase/genética , Diacilglicerol Colinofosfotransferase/metabolismoRESUMO
The human immunodeficiency virus type 1 (HIV-1) reservoir consists of latently infected cells which present a major obstacle to achieving a functional cure for HIV-1. The formation and maintenance of HIV-1 latency have been extensively studied, and latency-reversing agents (LRAs) that can reactivate latent HIV-1 by targeting the involved host factors are developed; however, their clinical efficacies remain unsatisfactory. Therefore, it is imperative to identify novel targets for more potential candidates or better combinations for LRAs. In this study, we utilized CRISPR affinity purification in situ of regulatory elements system to screen for host factors associated with the HIV-1 long terminal repeat region that could potentially be involved in HIV-1 latency. We successfully identified that origin recognition complex 1 (ORC1), the largest subunit of the origin recognition complex, contributes to HIV-1 latency in addition to its function in DNA replication initiation. Notably, ORC1 is enriched on the HIV-1 promoter and recruits a series of repressive epigenetic elements, including DNMT1 and HDAC1/2, and histone modifiers, such as H3K9me3 and H3K27me3, thereby facilitating the establishment and maintenance of HIV-1 latency. Moreover, the reactivation of latent HIV-1 through ORC1 depletion has been confirmed across various latency cell models and primary CD4+ T cells from people living with HIV-1. Additionally, we comprehensively validated the properties of liquid-liquid phase separation (LLPS) of ORC1 from multiple perspectives and identified the key regions that promote the formation of LLPS. This property is important for the recruitment of ORC1 to the HIV-1 promoter. Collectively, these findings highlight ORC1 as a potential novel target implicated in HIV-1 latency and position it as a promising candidate for the development of novel LRAs. IMPORTANCE: Identifying host factors involved in maintaining human immunodeficiency virus type 1 (HIV-1) latency and understanding their mechanisms prepares the groundwork to discover novel targets for HIV-1 latent infection and provides further options for the selection of latency-reversing agents in the "shock" strategy. In this study, we identified a novel role of the DNA replication factor origin recognition complex 1 (ORC1) in maintaining repressive chromatin structures surrounding the HIV-1 promoter region, thereby contributing to HIV-1 latency. This discovery expands our understanding of the non-replicative functions of the ORC complex and provides a potential therapeutic strategy for HIV-1 cure.
Assuntos
Epigênese Genética , Infecções por HIV , Repetição Terminal Longa de HIV , HIV-1 , Complexo de Reconhecimento de Origem , Regiões Promotoras Genéticas , Latência Viral , Latência Viral/genética , Humanos , HIV-1/genética , HIV-1/fisiologia , Repetição Terminal Longa de HIV/genética , Infecções por HIV/virologia , Infecções por HIV/genética , Infecções por HIV/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Complexo de Reconhecimento de Origem/genética , Linfócitos T CD4-Positivos/virologia , Células HEK293 , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , Regulação Viral da Expressão Gênica , Replicação Viral , Histonas/metabolismo , Histonas/genéticaRESUMO
The retrovirus HIV-1 integrates into the host genome and establishes a latent viral reservoir that escapes immune surveillance. Molecular mechanisms of HIV-1 latency have been studied extensively to achieve a cure for the acquired immunodeficiency syndrome (AIDS). Latency-reversing agents (LRAs) have been developed to reactivate and eliminate the latent reservoir by the immune system. To develop more promising LRAs, it is essential to evaluate new therapeutic targets. Here, we find that CBX4, a component of the Polycomb Repressive Complex 1 (PRC1), contributes to HIV-1 latency in seven latency models and primary CD4+ T cells. CBX4 forms nuclear bodies with liquid-liquid phase separation (LLPS) properties on the HIV-1 long terminal repeat (LTR) and recruits EZH2, the catalytic subunit of PRC2. CBX4 SUMOylates EZH2 utilizing its SUMO E3 ligase activity, thereby enhancing the H3K27 methyltransferase activity of EZH2. Our results indicate that CBX4 acts as a bridge between the repressor complexes PRC1 and PRC2 that act synergistically to maintain HIV-1 latency. Dissolution of phase-separated CBX4 bodies could be a potential intervention to reactivate latent HIV-1.
Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , HIV-1/genética , Humanos , Ligases , Corpos Nucleares , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb/genética , Latência Viral/genéticaRESUMO
Mechanistic investigation of the gold-catalyzed oxidative reactions of thioalkynes with quinoline N-oxides was performed using density functional theory (DFT) calculations. For the oxidative rearrangement of thioalkynes with quinoline N-oxide to yield the same products, the Cß-oxidation of thioalkynes was predicted to be competitive with Cα-oxidation, with the Cß-oxidative process slightly more favorable. However, for the oxidative alkenylation of propargyl aryl thioethers with quinoline N-oxides, the Cß-oxidation of thioether by quinoline N-oxide generated the product 3-hydroxy-1-alkylidene phenylthiopropan-2-one. Moreover, the ring opening of the four-membered sulfonium intermediate was achieved by the nucleophilic attack of quinoline N-oxide rather than a water molecule.
RESUMO
Numerous penguins can propagate pathogens with antibiotic resistance genes (ARGs) into Antarctica. However, the effects of penguin dissemination on the lake ARGs still have received little attention via guano deposition. Here, we have profiled ARGs in ornithogenic sediments subject to penguin guano (OLS) and nonornithogenic sediments (NOLS) from 16 lakes across Antarctica. A total of 191 ARGs were detected in all sediment samples, with a much higher abundance and diversity in OLS than in NOLS. Surprisingly, highly diverse and abundant ARGs were found in the OLS with a detection frequency of >40% and an absolute abundance of (2.34 × 109)-(4.98 × 109) copies g-1, comparable to those in coastal estuarine sediments and pig farms. The strong correlations of identified resistance genes with penguin guano input amount, environmental factors, mobile genetic elements, and bacterial community, in conjunction with network and redundancy analyses, all indicated that penguins were responsible for the dissemination and high enrichment of ARGs in lake sediments via the guano deposition, which might greatly outweigh local human-activity effects. Our results revealed that ARGs could be carried into lakes across the Antarctica through penguin migration, food chains, and guano deposition, which were closely connected with the widespread pollution of ARGs at the global scale.
Assuntos
Resistência Microbiana a Medicamentos , Lagos , Spheniscidae , Lagos/microbiologia , Animais , Spheniscidae/genética , Regiões Antárticas , Resistência Microbiana a Medicamentos/genética , Sedimentos Geológicos/microbiologia , Genes BacterianosRESUMO
Based on epidemiologic and embryologic patterns, nonsyndromic orofacial clefts- the most common craniofacial birth defects in humans- are commonly categorized into cleft lip with or without cleft palate (CL/P) and cleft palate alone (CP), which are traditionally considered to be etiologically distinct. However, some evidence of shared genetic risk in IRF6, GRHL3 and ARHGAP29 regions exists; only FOXE1 has been recognized as significantly associated with both CL/P and CP in genome-wide association studies (GWAS). We used a new statistical approach, PLACO (pleiotropic analysis under composite null), on a combined multi-ethnic GWAS of 2,771 CL/P and 611 CP case-parent trios. At the genome-wide significance threshold of 5 × 10-8, PLACO identified 1 locus in 1q32.2 (IRF6) that appears to increase risk for one OFC subgroup but decrease risk for the other. At a suggestive significance threshold of 10-6, we found 5 more loci with compelling candidate genes having opposite effects on CL/P and CP: 1p36.13 (PAX7), 3q29 (DLG1), 4p13 (LIMCH1), 4q21.1 (SHROOM3) and 17q22 (NOG). Additionally, we replicated the recognized shared locus 9q22.33 (FOXE1), and identified 2 loci in 19p13.12 (RAB8A) and 20q12 (MAFB) that appear to influence risk of both CL/P and CP in the same direction. We found locus-specific effects may vary by racial/ethnic group at these regions of genetic overlap, and failed to find evidence of sex-specific differences. We confirmed shared etiology of the two OFC subtypes comprising CL/P, and additionally found suggestive evidence of differences in their pathogenesis at 2 loci of genetic overlap. Our novel findings include 6 new loci of genetic overlap between CL/P and CP; 3 new loci between pairwise OFC subtypes; and 4 loci not previously implicated in OFCs. Our in-silico validation showed PLACO is robust to subtype-specific effects, and can achieve massive power gains over existing approaches for identifying genetic overlap between disease subtypes. In summary, we found suggestive evidence for new genetic regions and confirmed some recognized OFC genes either exerting shared risk or with opposite effects on risk to OFC subtypes.
Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Pleiotropia Genética , Biologia Computacional , Simulação por Computador , Etnicidade , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Reprodutibilidade dos TestesRESUMO
Four new compounds, including one drimane sesquiterpene lactone (1), one isocoumarin (2), one coumarin (3), and a new natural product (4), as well as fourteen known compounds were obtained from a deep-sea derived Cladosporium sp. SCSIO 41318. The structures of the new compounds were determined using extensive NMR and HRESIMS spectroscopic analysis, electronic circular dichroism calculations, and single-crystal X-ray diffraction measurements. Biological assays showed that compounds (1, 6, 7, 9-12, 14, 15, 17, 18) exhibited varying degrees of antimicrobial activity against the tested human pathogenic bacteria and plant pathogenic fungi. Besides, penicitrinone A (11) and penicitrinol A (12) displayed weak antitumor activities against the 22Rv1â cell line.
RESUMO
OBJECTIVES: Persistent lower limb dysfunction is a major challenge in post-stroke recovery. Repetitive transcranial magnetic stimulation is recognized for addressing post-stroke motor deficits. Our study explores the efficacy of combining rTMS with gait-adaptive training to enhance lower limb function and regulatory mechanisms in subacute stroke. MATERIALS AND METHODS: This randomized controlled trial enrolled 27 patients with subacute hemiparesis, dividing them into experimental and control groups. Both groups underwent gait-adaptability training 5 times/week for 4 weeks, with the experimental group receiving daily low-frequency transcranial magnetic stimulation before training. Primary outcomes included the pairwise derived brain symmetry index, lower-extremity Fugl-Meyer Assessment, 10-meter walk test, and Berg Balance Scale. Assessments occurred before and after the four-week intervention. RESULTS: The experimental and control groups showed significant improvements in the Fugl-Meyer Assessment, 10-meter walk test, and Berg Balance Scale after the 4-week intervention compared to baseline (all p<0.05). However, the experimental group demonstrated significantly greater improvements compared to the control group in the Fugl-Meyer Assessment (p=0.024) and the 10-meter walk test (p=0.033). Additionally, the experimental group exhibited a more pronounced decrease in the pairwise derived brain symmetry index (p=0.026) compared to the control group. Within the experimental group, the cortical subgroup's pairwise derived brain symmetry index was significantly lower than that of the control group (p=0.006). CONCLUSIONS: Combining low-frequency transcranial magnetic stimulation with Gait-Adaptive Training effectively enhances lower limb function and Regulatory mechanisms of the cerebral hemisphere in subacute stroke recovery, and it can provide rapid and effective rehabilitation effect compared with gait adaptation training alone.
RESUMO
Bipolaris sorokiniana, one of the most devastating hemibiotrophic fungal pathogens, causes root rot, crown rot, leaf blotching, and black embryos of gramineous crops worldwide, posing a serious threat to global food security. However, the host-pathogen interaction mechanism between B. sorokiniana and wheat remains poorly understood. To facilitate related studies, we sequenced and assembled the genome of B. sorokiniana LK93. Nanopore long reads and next generation sequencing short reads were applied in the genome assembly, and the final 36.4-Mb genome assembly contains 16 contigs with the contig N50 of 2.3 Mb. Subsequently, we annotated 11,811 protein-coding genes. Of these, 10,620 were functional genes, 258 of which were identified as secretory proteins, including 211 predicted effectors. Additionally, the 111,581-bp mitogenome of LK93 was assembled and annotated. The LK93 genomes presented in this study will facilitate research in the B. sorokiniana-wheat pathosystem for better control of crop diseases. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Ascomicetos , Genoma Mitocondrial , Ascomicetos/genética , Triticum/microbiologia , Genoma Mitocondrial/genética , Bipolaris/genética , Doenças das Plantas/microbiologiaRESUMO
Inducing early apoptosis in alveolar macrophages is one of the strategies influenza A virus (IAV) evolved to subvert host immunity. Correspondingly, the host mitochondrial protein nucleotide-binding oligomerization domain-like receptor (NLR)X1 is reported to interact with virus polymerase basic protein 1-frame 2 (PB1-F2) accessory protein to counteract virus-induced apoptosis. Herein, we report that one of the F-box proteins, FBXO6, promotes proteasomal degradation of NLRX1, and thus facilitates IAV-induced alveolar macrophages apoptosis and modulates both macrophage survival and type I interferon (IFN) signaling. We observed that FBXO6-deficient mice infected with IAV exhibited decreased pulmonary viral replication, alleviated inflammatory-associated pulmonary dysfunction, and less mortality. Analysis of the lungs of IAV-infected mice revealed markedly reduced leukocyte recruitment but enhanced production of type I IFN in Fbxo6-/- mice. Furthermore, increased type I IFN production and decreased viral replication were recapitulated in FBXO6 knockdown macrophages and associated with reduced apoptosis. Through gain- and loss-of-function studies, we found lung resident macrophages but not bone marrow-derived macrophages play a key role in the differences FBXO6 signaling pathway brings in the antiviral immune response. In further investigation, we identified that FBXO6 interacted with and promoted the proteasomal degradation of NLRX1. Together, our results demonstrate that FBXO6 negatively regulates immunity against IAV infection by enhancing the degradation of NLRX1 and thus impairs the survival of alveolar macrophages and antiviral immunity of the host.
Assuntos
Vírus da Influenza A , Influenza Humana , Interferon Tipo I , Infecções por Orthomyxoviridae , Camundongos , Animais , Humanos , Macrófagos Alveolares/metabolismo , Antivirais/metabolismo , Macrófagos , Interferon Tipo I/metabolismo , Replicação Viral/fisiologia , Imunidade , Proteínas Mitocondriais/metabolismoRESUMO
Given these advantages of widely designable structures and environmentally friendly characteristics, organic electrode materials (OEMs) are considered to be promising electrode materials for alkaline metal-ion batteries. However, their large-scale application is hampered by insufficient specific capacity and rate performance. Here, Fe2+ is coupled to the anhydride molecule NTCDA to form a novel K-storage anode Fe-NTCDA. In this way, the working potential of Fe-NTCDA anode is reduced, which makes it more suitable to be used as an anode material. Meanwhile, the electrochemical performance is significantly improved due to the increase in K-storage sites. Moreover, electrolytes regulation is implemented to optimize the K-storage behavior, resulting into a high specific capacity of 167â mAh/g after 100 cycles at 50â mA/g and 114â mAh/g even at 500â mA/g in the 3â M KFSI/DME electrolytes.
RESUMO
Isopropoxy benzene guanidine (IBG) is a guanidine derivative with antibacterial activity against multidrug-resistant bacteria. A few studies have revealed the metabolism of IBG in animals. The aim of the current study was to identify potential metabolic pathways and metabolites of IBG. The detection and characterization of metabolites were performed with high-performance liquid chromatography tandem mass spectrometry (UHPLC-Q-TOF-MS/MS). Seven metabolites were identified from the microsomal incubated samples by using the UHPLC-Q-TOF-MS/MS system. The metabolic pathways of IBG in the rat liver microsomes involved O-dealkylation, oxygenation, cyclization, and hydrolysis. Hydroxylation was the main metabolic pathway of IBG in the liver microsomes. This research investigated the in vitro metabolism of IBG to provide a basis for the further pharmacology and toxicology of this compound.
Assuntos
Microssomos Hepáticos , Espectrometria de Massas em Tandem , Ratos , Animais , Espectrometria de Massas em Tandem/métodos , Microssomos Hepáticos/metabolismo , Benzeno , Guanidina/farmacologia , Cromatografia Líquida de Alta Pressão/métodosRESUMO
Centipeda minima is a traditional Chinese medicine with wide applications and diverse pharmacological effects. Scholars have conducted extensive studies on its relevant clinical applications, especially its remarkable efficacy in cancer treatment. This paper thoroughly investigates the chemical composition and identification, pharmacological effects, and toxicity, along with the safety of Centipeda minima, so as to lay the foundation for corresponding clinical applications and product development. Furthermore, as global scholars have conducted extensive research on such clinical applications and made significant progress, the future development and utilization of Centipeda minima's active ingredients to create novel drugs are of great clinical significance.
Assuntos
Asteraceae , Medicina Tradicional ChinesaRESUMO
Titanium dioxide nanoparticles (TiO2 NPs) are ubiquitous in the environment and enter the terrestrial food chain via plant uptake. However, plant uptake behaviors of TiO2 NPs remain elusive. Here, the uptake kinetics of TiO2 NPs by wheat (Triticum aestivum L.) seedlings and the effects on cation flux in roots were examined in a hydroponic system. Uptake rate of TiO2 NPs ranged from 119.0 to 604.2 mg kg- 1 h- 1 within 8 h exposure. NP uptake decreased by 83% and 47%, respectively, in the presence of sodium azide (NaN3) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), indicating an energy-dependent uptake of TiO2 NPs. Moreover, accompanied with TiO2 NP uptake, net influx of Cd2+ decreased by 81%, while Na+ flux shifted from inflow to outflow at the meristematic zone of root. These findings provide valuable information for understanding plant uptake of TiO2 NPs.
Assuntos
Nanopartículas , Plântula , Triticum , Titânio , CátionsRESUMO
The risk assessment of heavy metals (HMs) in sewage sludge (SS) is essential before land application. Six HMs in nineteen SS collected in the Yangtze River Delta were analyzed to assess risks to environment, ecosystem, and human health. HMs concentrations were ranked in the order of Zn > Cu > Cr > Ni > Pb > Cd, with Cu, Zn, and Ni in a total of 16% of samples exceeding the legal standard. Zn showed greatest extractability according to EDTA-extractable concentrations. HMs in 16% of SS samples posed heavy contamination to the environment with Zn as the major pollutant. HMs in 26% of samples posed ecological risk to the ecosystem and Cd was the highest risky HM. The probabilistic health risk assessment revealed that HMs posed carcinogenic risks to all populations, but non-carcinogenic risks only to children. This work will provide fundamental information for land application of SS in this area.
Assuntos
Metais Pesados , Poluentes do Solo , Criança , Humanos , Esgotos , Ecossistema , Monitoramento Ambiental , Rios , Cádmio , Poluentes do Solo/análise , Medição de Risco , Metais Pesados/análise , ChinaRESUMO
PURPOSE: The objective of this study was to investigate the molecular characteristics and potential resistance mechanisms of linezolid-resistant (LZR) Staphylococcus capitis isolates from a tertiary hospital in China. METHODS: S. capitis isolates were obtained from clinical patient specimens; three of the isolates came from blood cultures and one from the hydrothorax. The agar dilution and E-test methods were used to identify antibiotic resistance. The chloramphenicol-florfenicol resistance (cfr) gene carrier status of the strains was determined by PCR. Whole-genome sequencing (WGS) was used to identify point mutations and L3, L4, and L22 mutations and to study the genetic environment of the cfr gene and the relationships between strains. RESULTS: The 4 isolates obtained in this study were all linezolid-resistant Staphylococcus strains. A similar of susceptibility profile pattern was observed in all four S. capitis strains, each of which exhibited a multidrug-resistant phenotype. A potentially novel mutation, C2128T, was identified, and the cfr genes of S. capitis strains were all positive. Additionally, the same mutations (C2128T and G2600T) were identified in all 23S rRNA sequences of the isolates, whereas mutations were lacking in the L3, L4, and L22 ribosomal proteins. The genetic environments surrounding cfr were identical in all four isolates. A schematic diagram of the phylogenetic tree showed that they were closely related to AYP1020, CR01, and TW2795, and a total of seven drug resistance genes were identified in these strains. CONCLUSIONS: The study indicated that the resistance of the Staphylococcus capitis strains to linezolid was caused by multiple mechanisms, and a potential novel mutation, C2128T, that may have an impact on bacterial resistance was identified.
Assuntos
Farmacorresistência Bacteriana , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Staphylococcus capitis , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Genes de RNAr , Humanos , Linezolida/farmacologia , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Mutação , Filogenia , RNA Ribossômico 23S/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus capitis/genéticaRESUMO
OBJECTIVES: To tested the ability of N-myc and STAT interactor (NMI) levels in patients with community-acquired pneumonia (CAP) to predict the severity of the disease. METHODS: Prospective observational analysis of patients with CAP was performed. The NMI levels in serum of 394 CAP patients on admission were measured by immunoassay. Thirty-day mortality and intensive care unit (ICU) admission were set as clinical outcomes. The predicting value of NMI for clinical outcomes was determined by receiver operating characteristic curve and logistic regression analysis. The internal validity was assessed using cross-validation with bootstrap resampling. RESULTS: NMI was an independent risk factor for both 30-day mortality and admission to ICU for CAP patients. The area under curve (AUC) of NMI to predict mortality was 0.91 (95% CI: 0.86-0.96), and that to predict ICU admission was 0.92 (95% CI: 0.88-0.97), significantly higher than that of other biomarkers including procalcitonin and C-reactive protein. The proportion of clinical outcomes notably rose as NMI levels elevated (P < 0.001). The AUCs of the new score systems including NMI (N-PSI and N-CURB65 score) to predict outcomes were significantly higher than the original score systems. CONCLUSIONS: NMI is a novel biomarker for predicting CAP severity superior to former biomarkers in 30-day mortality and ICU admission.
Assuntos
Infecções Comunitárias Adquiridas , Pneumonia , Biomarcadores , Proteína C-Reativa , Humanos , Pró-Calcitonina , Estudos Prospectivos , Índice de Gravidade de DoençaRESUMO
Hybrid organic-inorganic perovskite (HOIP) have received tremendous scientific attention because of the phase transition and photovoltaic properties. However, achieving the special perovskite structure with both two-step dielectric response and luminescence characteristics is rarely reported. Herein, we report an organic-inorganic hybrid perovskite, [(BA)2 â PbI4 ] (Compound 1, BA=n-butylamine) by introducing flexible organic cations (HBA+ ), with direct mid-band gap as 2.28â eV. Interestingly, this material exhibits two-step reversible dielectric response at 350â K and 460â K (in heating process), respectively. Besides, the photoluminescence was found: it emits charming green light under 365â nm lamp (Photoluminescence quantum yield is 9.52 %). The outstanding two-step dielectric response and luminescence characteristics of this compound might pave the way for the application of dielectric and ferroelectric functional materials in temperature sensors and mechanical switches.
RESUMO
A mechanistic investigation of α-alkynylation and α-allenylation of aldehydes under the synergistic catalysis of AuCl/amine was performed using density functional theory (DFT) calculations. For such a reaction that delivers two products, this study reveals that the reaction undergoes such a mechanistic mode: reactants â alkynyl product â allenyl product, implying that the allenyl product cannot be obtained directly from reactants. The product ratio obtained experimentally was rationalized based on the computed results that both products can reversibly interconvert with AuCl as the catalyst and with N-containing Lewis bases as additives such as 4,5-diazafluorenone. For the relative stability of alkynyl versus allenyl compounds, unsaturated substituents are found to favor the allenyl compounds.
RESUMO
House dust mites (HDM) can cause DNA double-strand breaks in the lungs of asthmatic patients. However, the molecular mechanisms driving DNA damage and repair in HDM-induced asthma are yet to be elucidated. Thus, in this study, HDM treatment was applied to BEAS-2B cells and mice to mimic the pathological process of asthma in vitro and in vivo, respectively. γ-H2AX foci and expression were measured by immunofluorescence staining and western blot, respectively. The levels of interleukin (IL)-4, IL-6, IL-13, and tumour necrosis factor α (TNFα) were measured using enzyme-linked immunoassay. The expression of USP25 and BARD1 was measured by reverse transcription quantitative PCR and western blot. Co-immunoprecipitation and ubiquitination assays were employed to detect the relationship between USP25 and BARD1. As per the results, it was found that the deubiquitylating enzyme USP25 repressed HDM-induced DNA damage and the production of proinflammatory cytokines, including TNF-α, IL-4, IL-8, and IL-13, in BEAS-2B cells; in contrast, the depletion of USP25 led to the opposite effects. USP25-mediated inhibition of DNA damage and inflammation was facilitated by the stabilizing protein BARD1, which is a tumor suppressor that principally functions by promoting DNA repair and replication in BEAS-2B cells. Furthermore, USP25 was found to robustly augment BARD1 protein abundance and prevent HDM-induced DNA damage and inflammation in vivo. Taken together, these results suggest a novel mechanism contributing to DNA damage and repair in HDM-induced asthma and that selectively modulating this pathway could lead to a novel therapeutic approach for controlling and managing asthma due to HDM exposure.