Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Langmuir ; 39(30): 10660-10669, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37466176

RESUMO

Self-assembly is an important bottom-up fabrication approach based on accurate manipulation of solid-air-liquid interfaces to construct microscale structures using nanoscale materials. This approach plays a substantial role in the fabrication of microsensors, nanosensors, and actuators. Improving the controllability of self-assembly to realize large-scale regular micro/nano patterns is crucial for this approach's further development and wider applications. Herein, we propose a novel strategy for patterning nanoparticle arrays on soft substrates. This strategy is based on a unique process of liquid film rupture self-assembly that is convenient, precise, and cost-efficient for mass manufacturing. This approach involves two key steps. First, suspended liquid films comprising monolayer polystyrene (PS) spheres are realized via liquid-air interface self-assembly over prepatterned microstructures. Second, these suspended liquid films are ruptured in a controlled manner to induce the self-assembly of internal PS spheres around the morphological edges of the underlying microstructures. This nanoparticle array patterning method is comprehensively investigated in terms of the effect of the PS sphere size, morphological effect of the microstructured substrate, key factors influencing liquid film-rupture self-assembly, and optical transmittance of the fabricated samples. A maximum rupture rate of 95.4% was achieved with an optimized geometric and dimensional design. Compared with other nanoparticle-based self-assembly methods used to form patterned arrays, the proposed approach reduces the waste of nanoparticles substantially because all nanoparticles self-assemble around the prepatterned microstructures. More nanoparticles assemble to form prepatterned arrays, which could strengthen the nanoparticle array network without affecting the initial features of prepatterned microstructures.

2.
Sensors (Basel) ; 21(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668954

RESUMO

In recent decades, nanogenerators based on several techniques such as triboelectric effects, piezoelectric effects, or other mechanisms have experienced great developments. The nanoenergy generated by nanogenerators is supposed to be used to overcome the problem of energy supply problems for portable electronics and to be applied to self-powered microsystems including sensors, actuators, integrated circuits, power sources, and so on. Researchers made many attempts to achieve a good solution and have performed many explorations. Massive efforts have been devoted to developing self-powered electronics, such as self-powered communication devices, self-powered human-machine interfaces, and self-powered sensors. To take full advantage of nanoenergy, we need to review the existing applications, look for similarities and differences, and then explore the ways of achieving various self-powered systems with better performance. In this review, the methods of applying nanogenerators in specific circumstances are studied. The applications of nanogenerators are classified into two categories, direct utilization and indirect utilization, according to whether a treatment process is needed. We expect to offer a line of thought for future research on self-powered electronics.

3.
Sensors (Basel) ; 20(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887409

RESUMO

Over the last two decades, piezoelectric resonant sensors based on micro-electromechanical systems (MEMS) technologies have been extensively studied as such sensors offer several unique benefits, such as small form factor, high sensitivity, low noise performance and fabrication compatibility with mainstream integrated circuit technologies. One key challenge for piezoelectric MEMS resonant sensors is enhancing their quality factors (Qs) to improve the resolution of these resonant sensors. Apart from sensing applications, large values of Qs are also demanded when using piezoelectric MEMS resonators to build high-frequency oscillators and radio frequency (RF) filters due to the fact that high-Q MEMS resonators favor lowering close-to-carrier phase noise in oscillators and sharpening roll-off characteristics in RF filters. Pursuant to boosting Q, it is essential to elucidate the dominant dissipation mechanisms that set the Q of the resonator. Based upon these insights on dissipation, Q-enhancement strategies can then be designed to target and suppress the identified dominant losses. This paper provides a comprehensive review of the substantial progress that has been made during the last two decades for dissipation analysis methods and Q-enhancement strategies of piezoelectric MEMS laterally vibrating resonators.

4.
Arch Microbiol ; 198(2): 193-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26748983

RESUMO

Phosphopantetheinyl transferases (PPTases) catalyze the posttranslational modification of acyl carrier proteins (ACPs) in fatty acid synthases (FASs), ACPs in polyketide synthases, and peptidyl carrier proteins (PCPs) in nonribosomal peptide synthetases (NRPSs) in all organisms. Some bacterial PPTases have broad substrate specificities for ACPs/PCPs and/or coenzyme A (CoA)/CoA analogs, facilitating their application in metabolite production in hosts and/or labeling of ACPs/PCPs, respectively. Here, a group II PPTase SchPPT from Streptomyces chattanoogensis L10 was characterized to accept a heterologous ACP and acetyl-CoA. Thus, SchPPT is a promiscuous PPTase and may be used on polyketide production in heterologous bacterial host and labeling of ACPs.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/metabolismo , Coenzima A/química , Coenzima A/metabolismo , Streptomyces/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Streptomyces/metabolismo , Especificidade por Substrato
5.
J Ind Microbiol Biotechnol ; 43(12): 1693-1703, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27757551

RESUMO

FK506 (tacrolimus), which is produced by many Streptomyces strains, is clinically used as an immunosuppressive agent and for treatment of inflammatory skin diseases. Here, we identified that the FK506 biosynthetic gene cluster in an industrial FK506-producing strain Streptomyces tsukubaensis L19 is organized as eight transcription units. Two pathway-specific regulators, FkbN and Tcs7, involved in FK506 biosynthesis from S. tsukubaensis L19 were characterized in vivo and in vitro. FkbN activates the transcription of six transcription units in FK506 biosynthetic gene cluster, and Tcs7 activates the transcription of fkbN. In addition, the DNA-binding specificity of FkbN was determined. Finally, a high FK506-producing strain was constructed by overexpression of both fkbN and tcs7 in S. tsukubaensis L19, which improved FK506 production by 89 % compared to the parental strain.


Assuntos
Proteínas de Bactérias/fisiologia , Imunossupressores/metabolismo , Tacrolimo/metabolismo , Transativadores/fisiologia , Reatores Biológicos , Vias Biossintéticas , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Streptomyces/genética
6.
Curr Microbiol ; 70(3): 390-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25413605

RESUMO

It is known that bacterial group II phosphopantetheinyl transferases (PPTases) usually phosphopantetheinylate acyl carrier proteins (ACPs) involved in the secondary metabolism. For example, a bacterial group II PPTase SchPPT has been known to phosphopantetheinylate only ACPs involved in secondary metabolism, such as scn ACP0-2 and scn ACP7. In this study, we found two bacterial group II PPTases, Hppt and Sppt, could phosphopantetheinylate not only scn ACP0-2 and scn ACP7, but also sch FAS ACP, an ACP involved in primary metabolism. Swapping of the N terminus and C terminus of PPTases showed that (i) both the hybrids Hppt-Sppt and Sppt-Hppt could phosphopantetheinylate sch FAS ACP but not scn ACP0-2; (ii) both the hybrids Sppt-SchPPT and SchPPT-Sppt lost abilities to phosphopantetheinylate sch FAS ACP and scn ACP0-2. Hppt and Sppt represent group II PPTases which phosphopantetheinylate both ACPs involved in primary metabolism and ACPs involved in secondary metabolism.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Metabolismo Basal , Metabolismo Secundário , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Sequência de Aminoácidos , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Catálise , Ativação Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Dados de Sequência Molecular , Filogenia , Domínios e Motivos de Interação entre Proteínas , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética
7.
Nanotechnology ; 25(18): 185705, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24739789

RESUMO

This paper addresses a novel 3D reconstruction method for nanostructures based on the scanning electron microscopy (SEM) imaging principle. In this method, the shape from shading (SFS) technique is employed, to analyze the gray-scale information of a single top-view SEM image which contains all the visible surface information, and finally to reconstruct the 3D surface morphology. It offers not only unobstructed observation from various angles but also the exact physical dimensions of nanostructures. A convenient and commercially available tool (NanoViewer) is developed based on this method for nanostructure analysis and characterization of properties. The reconstruction result coincides well with the SEM nanostructure image and is verified in different ways. With the extracted structure information, subsequent research of the nanostructure can be carried out, such as roughness analysis, optimizing properties by structure improvement and performance simulation with a reconstruction model. Efficient, practical and non-destructive, the method will become a powerful tool for nanostructure surface observation and characterization.


Assuntos
Imageamento Tridimensional/métodos , Microscopia Eletrônica de Varredura/métodos , Nanoestruturas , Humanos , Modelos Teóricos , Silício
8.
Nano Lett ; 13(3): 1168-72, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23384278

RESUMO

An attractive method to response the current energy crisis and produce sustainable nonpolluting power source is harvesting energy from our living environment. However, the energy in our living environment always exists in low-frequency form, which is very difficult to be utilized directly. Here, we demonstrated a novel sandwich-shape triboelectric nanogenerator to convert low-frequency mechanical energy to electric energy with double frequency. An aluminum film was placed between two polydimethylsiloxane (PDMS) membranes to realize frequency multiplication by twice contact electrifications within one cycle of external force. The working mechanism was studied by finite element simulation. Additionally, the well-designed micro/nano dual-scale structures (i.e., pyramids and V-shape grooves) fabricated atop PDMS surface was employed to enhance the device performance. The output peak voltage, current density, and energy volume density achieved 465 V, 13.4 µA/cm(2), and 53.4 mW/cm(3), respectively. This novel nanogenerator was systematically investigated and also demonstrated as a reliable power source, which can be directly used to not only lighten five commercial light-emitting diodes (LEDs) but also drive an implantable 3-D microelectrode array for neural prosthesis without any energy storage unit or rectification circuit. This is the first demonstration of the nanogenerator for directly driving biomedical microsystems, which extends the application fields of the nanogenerator and drives it closer to practical applications.

9.
Microsyst Nanoeng ; 10: 58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725436

RESUMO

This work presents a single-structure 3-axis Lorentz force magnetometer (LFM) based on an AlN-on-Si MEMS resonator. The operation of the proposed LFM relies on the flexible manipulation of applied excitation currents in different directions and frequencies, enabling the effective actuation of two mechanical vibration modes in a single device for magnetic field measurements in three axes. Specifically, the excited out-of-plane drum-like mode at 277 kHz is used for measuring the x- and y-axis magnetic fields, while the in-plane square-extensional mode at 5.4 MHz is used for measuring the z-axis magnetic field. The different configurations of applied excitation currents ensure good cross-interference immunity among the three axes. Compared to conventional capacitive LFMs, the proposed piezoelectric LFM utilizes strong electromechanical coupling from the AlN layer, which allows it to operate at ambient pressure with a high sensitivity. To understand and analyze the measured results, a novel equivalent circuit model for the proposed LFM is also reported in this work, which serves to separate the effect of Lorentz force from the unwanted capacitive feedthrough. The demonstrated 3-axis LFM exhibits measured magnetic responsivities of 1.74 ppm/mT, 1.83 ppm/mT and 6.75 ppm/mT in the x-, y- and z-axes, respectively, which are comparable to their capacitive counterparts.

10.
Cells ; 13(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891117

RESUMO

Fibroblast growth factor 5 (FGF5) plays key roles in promoting the transition from the anagen to catagen during the hair follicle cycle. The sheep serves as an excellent model for studying hair growth and is frequently utilized in various research processes related to human skin diseases. We used the CRISPR/Cas9 system to generate four FGF5-edited Dorper sheep and only low levels of FGF5 were detected in the edited sheep. The density of fine wool in GE sheep was markedly increased, and the proportion of fine wool with a diameter of 14.4-20.0 µm was significantly higher. The proliferation signal in the skin of gene-edited (GE) sheep was stronger than in wild-type (WT) sheep. FGF5 editing decreased cortisol concentration in the skin, further activated the activity of antioxidant enzymes such as Glutathione peroxidase (GSH-Px), and regulated the expression of Wnt signaling pathways containing Wnt agonists (Rspondins, Rspos) and antagonists (Notum) in hair regeneration. We suggest that FGF5 not only mediates the activation of antioxidant pathways by cortisol, which constitutes a highly coordinated microenvironment in hair follicle cells, but also influences key signals of the Wnt pathway to regulate secondary hair follicle (SHF) development. Overall, our findings here demonstrate that FGF5 plays a significant role in regulating SHF growth in sheep and potentially serves as a molecular marker of fine wool growth in sheep breeding.


Assuntos
Fator 5 de Crescimento de Fibroblastos , Glutationa Peroxidase , Folículo Piloso , Via de Sinalização Wnt , , Animais , Fator 5 de Crescimento de Fibroblastos/metabolismo , Fator 5 de Crescimento de Fibroblastos/genética , Ovinos , Lã/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Edição de Genes , Hidrocortisona/metabolismo , Proliferação de Células , Sistemas CRISPR-Cas/genética
11.
Langmuir ; 29(34): 10769-75, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23906343

RESUMO

This paper reports a novel single-step wafer-level fabrication of superhydrophobic micro/nano dual-scale (MNDS) poly(dimethylsiloxane) (PDMS) films. The MNDS PDMS films were replicated directly from an ultralow-surface-energy silicon substrate at high temperature without any surfactant coating, achieving high precision. An improved deep reactive ion etching (DRIE) process with enhanced passivation steps was proposed to easily realize the ultralow-surface-energy MNDS silicon substrate and also utilized as a post-treatment process to strengthen the hydrophobicity of the MNDS PDMS film. The chemical modification of this enhanced passivation step to the surface energy has been studied by density functional theory, which is also the first investigation of C4F8 plasma treatment at molecular level by using first-principle calculations. From the results of a systematic study on the effect of key process parameters (i.e., baking temperature and time) on PDMS replication, insight into the interaction of hierarchical multiscale structures of polymeric materials during the micro/nano integrated fabrication process is experimentally obtained for the first time. Finite element simulation has been employed to illustrate this new phenomenon. Additionally, hierarchical PDMS pyramid arrays and V-shaped grooves have been developed and are intended for applications as functional structures for a light-absorption coating layer and directional transport of liquid droplets, respectively. This stable, self-cleaning PDMS film with functional micro/nano hierarchical structures, which is fabricated through a wafer-level single-step fabrication process using a reusable silicon mold, shows attractive potential for future applications in micro/nanodevices, especially in micro/nanofluidics.


Assuntos
Nanoestruturas/química , Polímeros/química , Dimetilpolisiloxanos/química , Microscopia Eletroquímica de Varredura , Nanoestruturas/ultraestrutura , Propriedades de Superfície
12.
Zhonghua Yan Ke Za Zhi ; 49(3): 217-23, 2013 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-23866702

RESUMO

OBJECTIVE: To investigate the genes and signalling pathways located upstream of the inflammatory processes in human leukocyte antigen (HLA)-B27-associated acute anterior uveitis by gene expression microarray. METHODS: Experimental study. HLA-B27-positive and-negative monocytes isolated from human peripheral blood were stimulated with Vibrio cholera lipopolysaccharide (LPS). Gene expression microarrays were used to identify the differentially expressed genes. Differentially expressed (DE) genes were testified by real-time PCR and analyzed by a series of bioinformatics-based techniques such as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes. RESULTS: Gene expression microarray analysis revealed marked differences between HLA-B27-positive acute anterior uveitis (AAU) and HLA-B27-negative healthy control peripheral monocytes in the genes that were upregulated in response to LPS stimulation with 1105 genes and 25 genes respectively. Gene Ontology enrichment and pathway analysis indicated that genes participating in protein transport and folding were essential to the inflammatory process. The LPS receptor-Toll-like receptor (TLR)4 induced TLR signalling pathway and pathway related to Vibrio cholerae infection were located upstream of the network and contribute to the overall response. Among the DE genes, PIK3CA, PIK3CB, AKT3, and MAPK1 might play critical roles in inflammation. CONCLUSIONS: Equivalent LPS stimulation induces a different response in HLA-B27-positive peripheral monocytes compared to normal control, suggesting that the TLR pathway is involved in the pathogenesis of HLA-B27-associated AAU.


Assuntos
Antígeno HLA-B27/imunologia , Monócitos/metabolismo , Uveíte Anterior/sangue , Uveíte Anterior/imunologia , Adulto , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Humanos , Inflamação , Masculino , Transdução de Sinais/genética , Uveíte Anterior/genética
13.
Microsyst Nanoeng ; 9: 94, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484504

RESUMO

Wireless sensor network nodes are widely used in wearable devices, consumer electronics, and industrial electronics and are a crucial component of the Internet of Things (IoT). Recently, advanced power technology with sustainable energy supply and pollution-free characteristics has become a popular research focus. Herein, to realize an unattended and reliable power supply unit suitable for distributed IoT systems, we develop a high-performance triboelectric-electromagnetic hybrid nanogenerator (TEHNG) to harvest mechanical energy. The TEHNG achieves a high load power of 21.8 mW by implementing improvements of material optimization, configuration optimization and pyramid microstructure design. To realize a self-powered integrated microsystem, a power management module, energy storage module, sensing signal processing module, and microcontroller unit are integrated into the TEHNG. Furthermore, an all-in-one wireless multisensing microsystem comprising the TEHNG, the abovementioned integrated functional circuit and three sensors (temperature, pressure, and ultraviolet) is built. The milliwatt microsystem operates continuously with the TEHNG as the only power supply, achieving self-powered operations of sensing environmental variables and transmitting wireless data to a terminal in real time. This shows tremendous application potential in the IoT field.

14.
Front Microbiol ; 14: 1075164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876076

RESUMO

Introduction: Toll-like receptor 4 (TLR4) identifies Gram-negative bacteria or their products and plays a crucial role in host defense against invading pathogens. In the intestine, TLR4 recognizes bacterial ligands and interacts with the immune system. Although TLR4 signaling is a vital component of the innate immune system, the influence of TLR4 overexpression on innate immune response and its impact on the composition of the intestinal microbiota is unknown. Methods: Here, we obtained macrophages from sheep peripheral blood to examine phagocytosis and clearance of Salmonella Typhimurium (S. Typhimurium) in macrophages. Meanwhile, we characterized the complex microbiota inhabiting the stools of TLR4 transgenic (TG) sheep and wild-type (WT) sheep using 16S ribosomal RNA (rRNA) deep sequencing. Results: The results showed that TLR4 overexpression promoted the secretion of more early cytokines by activating downstream signaling pathways after stimulation by S. Typhimurium. Furthermore, diversity analysis demonstrated TLR4 overexpression increased microbial community diversity and regulated the composition of intestinal microbiota. More importantly, TLR4 overexpression adjusted the gut microbiota composition and maintained intestinal health by reducing the ratio of Firmicutes/Bacteroidetes and inflammation and oxidative stress-producing bacteria (Ruminococcaceae, Christensenellaceae) and upregulating the abundance of Bacteroidetes population and short-chain fatty acid (SCFA)-producing bacteria, including Prevotellaceae. These dominant bacterial genera changed by TLR4 overexpression revealed a close correlation with the metabolic pathways of TG sheep. Discussion: Taken together, our findings suggested that TLR4 overexpression can counteract S. Typhimurium invasion as well as resist intestinal inflammation in sheep by regulating intestinal microbiota composition and enhancing anti-inflammatory metabolites.

15.
Microsyst Nanoeng ; 8: 61, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685964

RESUMO

Wearable electronics, as essential components of the Internet of Things (IoT), have attracted widespread attention, and the trend is to configure attractive wearable smart microsystems by integrating sensing, powering, and other functions. Herein, we developed an elastic hybrid triboelectric-electromagnetic microenergy harvester (named EHTE) to realize hybrid sensing and microenergy simultaneously. This EHTE is a highly integrated triboelectric nanogenerator (TENG) and electromagnetic nanogenerator (EMG). Based on the triboelectric-electromagnetic hybrid mechanism, an enhanced electrical output of the EHTE was achieved successfully, which demonstrates the feasibility of the EHTE for microelectronics powering. Moreover, with the merits of the EMG, the developed hybrid microenergy harvester integrated both active frequency sensing and passive inductive sensing capabilities. Specifically, the almost linear correlation of the electromagnetic outputs to the frequencies of the external stimulus endowed the proposed EHTE with an outstanding active frequency sensing ability. In addition, due to the unique structural configuration of the EMG (i.e., a conductive permanent magnet (PM), hybrid deformation layer, and flexible printed circuit board (FPCB) coil), an opportunity was provided for the developed EHTE to serve as a passive inductive sensor based on the eddy current effect (i.e., a form of electromagnetic induction). Therefore, the developed EHTE successfully achieved the integration of hybrid sensing (i.e., active frequency sensing and passive inductive sensing) and microenergy (i.e., the combination of electromagnetic effect and triboelectric effect) within a single device, which demonstrates the potential of this newly developed EHTE for wearable electronic applications, especially in applications of compact active microsystems.

16.
Micromachines (Basel) ; 13(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35208378

RESUMO

In recent years, considerable research efforts have been devoted to the development of wearable multi-functional sensing technology to fulfill the requirements of healthcare smart detection, and much progress has been achieved. Due to the appealing characteristics of flexibility, stretchability and long-term stability, the sensors have been used in a wide range of applications, such as respiration monitoring, pulse wave detection, gait pattern analysis, etc. Wearable sensors based on single mechanisms are usually capable of sensing only one physiological or motion signal. In order to measure, record and analyze comprehensive physical conditions, it is indispensable to explore the wearable sensors based on hybrid mechanisms and realize the integration of multiple smart functions. Herein, we have summarized various working mechanisms (resistive, capacitive, triboelectric, piezoelectric, thermo-electric, pyroelectric) and hybrid mechanisms that are incorporated into wearable sensors. More importantly, to make wearable sensors work persistently, it is meaningful to combine flexible power units and wearable sensors and form a self-powered system. This article also emphasizes the utility of self-powered wearable sensors from the perspective of mechanisms, and gives applications. Furthermore, we discuss the emerging materials and structures that are applied to achieve high sensitivity. In the end, we present perspectives on the outlooks of wearable multi-functional sensing technology.

17.
Research (Wash D C) ; 2022: 9865926, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082211

RESUMO

This paper reports a type of highly sensitive temperature sensor utilizing AlN-on-Si resonators with coupled-beam structures of double- and triple-ended-tuning-fork (D/TETF). For both resonators, the out-of-plane flexural mode is adopted as it favors the effect of thermal mismatch between the composite layers inherent to the AlN-on-Si structure and thus helps attain a large temperature coefficient of resonant frequency (TCF). The analytical model to calculate TCF values of D/TETF AlN-on-Si resonators is provided, which agrees well with the finite-element simulation and experimental results. The resonant temperature sensor is built by closing the loop of the AlN-on-Si resonator, a transimpedance amplifier, a low-pass filter, and a phase shifter to form an oscillator, the output frequency of which shifts proportionally to the ambient temperature. The measured sensitivities of the temperature sensors using D/TETF resonators are better than -1000 ppm/°C in the temperature range of 25°C~60°C, showing great potential to fulfill the on-chip temperature compensation scheme for cofabricated sensors.

18.
ACS Appl Mater Interfaces ; 14(35): 39681-39700, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36006298

RESUMO

Wearable electronics with development trends such as miniaturization, multifunction, and smart integration have become an important part of the Internet of Things (IoT) and have penetrated various sectors of modern society. To meet the increasing demands of wearable electronics in terms of deformability and conformability, many efforts have been devoted to overcoming the nonstretchable and poor conformal properties of traditional functional materials and endowing devices with outstanding mechanical properties. One of the promising approaches is composite engineering in which traditional functional materials are incorporated into the various polymer matrices to develop different kinds of functional composites and construct different functions of stretchable electronics. Herein, we focus on the approach of composite engineering and the polymer matrix of silicone rubber (SR), and we summarize the state-of-the-art details of silicone rubber-based conductive composites (SRCCs), including a summary of their conductivity mechanisms and synthesis methods and SRCC applications for stretchable electronics. For conductivity mechanisms, two conductivity mechanisms of SRCC are emphasized: percolation theory and the quantum tunneling mechanism. For synthesis methods of SRCCs, four typical approaches to synthesize different kinds of SRCCs are investigated: mixing/blending, infiltration, ion implantation, and in situ formation. For SRCC applications, different functions of stretchable electronics based on SRCCs for interconnecting, sensing, powering, actuating, and transmitting are summarized, including stretchable interconnects, sensors, nanogenerators, antennas, and transistors. These functions reveal the feasibility of constructing a stretchable all-in-one self-powered microsystem based on SRCC-based stretchable electronics. As a prospect, this microsystem is expected to integrate the functional sensing modulus, the energy harvesting modulus, and the process and response modulus together to sense and respond to environmental stimulations and human physiological signals.

19.
Research (Wash D C) ; 2021: 9817062, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34870228

RESUMO

Recently, triboelectric nanogenerators (TENGs) have been promoted as an effective technique for ambient energy harvesting, given their large power density and high energy conversion efficiency. However, traditional TENGs based on the combination of triboelectrification effect and electrostatic induction have proven susceptible to environmental influence, which intensively restricts their application range. Herein, a new coupling mechanism based on electrostatic induction and ion conduction is proposed to construct flexible stable output performance TENGs (SOP-TENGs). The calcium chloride doped-cellulose nanofibril (CaCl2-CNF) film made of natural carrots was successfully introduced to realize this coupling, resulting from its intrinsic properties as natural nanofibril hydrogel serving as both triboelectric layer and electrode. The coupling of two conductive mechanisms of SOP-TENG was comprehensively investigated through electrical measurements, including the effects of moisture content, relative humidity, and electrode size. In contrast to the conventional hydrogel ionotronic TENGs that require moisture as the carrier for ion transfer and use a hydrogel layer as the electrode, the use of a CaCl2-CNF film (i.e., ion-doped natural hydrogel layer) as a friction layer in the proposed SOP-TENG effectively realizes a superstable electrical output under varying moisture contents and relative humidity due to the compound transfer mechanism of ions and electrons. This new working principle based on the coupling of electrostatic induction and ion conduction opens a wider range of applications for the hydrogel ionotronic TENGs, as the superstable electrical output enables them to be more widely applied in various complex environments to supply energy for low-power electronic devices.

20.
Arch Anim Breed ; 64(1): 211-221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34109270

RESUMO

Previous studies have shown that BMPR1B promotes follicular development and ovarian granulosa cell proliferation, thereby affecting ovulation in mammals. In this study, the expression and polymorphism of the BMPR1B gene associated with litter size in small-tail Han (STH) sheep were determined. The expression of BMPR1B was detected in 14 tissues of STH sheep during the follicular phase as well as in the hypothalamic-pituitary-gonadal (HPG) axis of monotocous and polytocous STH sheep during the follicular and luteal phases using quantitative polymerase chain reaction (qPCR). Sequenom MassARRAY® single nucleotide polymorphism (SNP) technology was also used to detect the polymorphism of SNPs in seven sheep breeds. Here, BMPR1B was highly expressed in hypothalamus, ovary, uterus, and oviduct tissue during the follicular phase, and BMPR1B was expressed significantly more in the hypothalamus of polytocous ewes than in monotocous ewes during both the follicular and luteal phases ( P < 0.05 ). For genotyping, we found that genotype and allele frequencies of three loci of the BMPR1B gene were extremely significantly different ( P < 0.01 ) between the monotocous and polytocous groups. Association analysis results showed that the g.29380965A > G locus had significant negative effects on the litter size of STH sheep, and the combination of g.29380965A > G and FecB (Fec - fecundity and B - Booroola; A746G) at the BMPR1B gene showed that the litter size of AG-GG, AA-GG, and GG-GG genotypes was significantly higher compared with other genotypes ( P < 0.05 ). This is the first study to find a new molecular marker affecting litter size and to systematically analyze the expression of BMPR1B in different fecundity and physiological periods of STH sheep.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA