RESUMO
To investigate the effect of epimedium total flavone capsules on post-stroke cognitive impairment(PSCI) in rats. The transient middle cerebral artery occlusion(tMCAO) model was constructed on selected rats, and rats with impaired neurological function were randomly divided into the model group, low, middle, and high dose groups of epimedium total flavone capsules, and nimodipine tablet group. The cognitive function of rats was measured after administration. Pathological changes in brain tissue were observed after hematoxylin-eosin staining(HE). Neuronal nuclei(NeuN) and glial fibrillary acidic protein(GFAP) distribution in brain tissue were tested by immunofluorescent staining. The level of amyloid beta 1-42(Aß_(1-42)), neuron specific enolase(NSE), acetylcholine(ACH), dopamine(DA), 5-hydroxytryptamine(5-HT), norepinephrine(NE), interleukin-1ß(IL-1ß), tumor necrosis factor-α(TNF-α), and hypersensitive C-reactive protein(hs-CRP) in rat serum was tested. Moreover, Western blot was utilized to test the expression of nuclear factor-kappaB(NF-κB), p-NF-κB, alpha inhibitor of NF-κB(IκBα) protein, and p-IκBα protein in the hippocampus. The experimental results showed that epimedium total flavone capsules can improve the cognitive function of model rats, and the mechanism may be related to the regulation of the expression of p-IκBα and p-NF-κB proteins, so as to inhibit inflammatory response induced by ischemia-reperfusion.
Assuntos
Cápsulas , Disfunção Cognitiva , Medicamentos de Ervas Chinesas , Epimedium , Flavonas , Ratos Sprague-Dawley , Acidente Vascular Cerebral , Animais , Ratos , Epimedium/química , Masculino , Flavonas/administração & dosagem , Flavonas/farmacologia , Flavonas/química , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/complicações , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Humanos , Peptídeos beta-Amiloides/metabolismo , NF-kappa B/metabolismo , NF-kappa B/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Cognição/efeitos dos fármacosRESUMO
Network targets theory and technology have transcended the limitations of the "single gene, single target" model, aiming to decipher the mechanisms of traditional Chinese medicine(TCM) based on biological network from the perspective of informatics and system. As the core of TCM network pharmacology, with the development of computer science and high-throughput experimental techniques, the network target theory and technology are beginning to exhibit a trend of organic integration with artificial intelligence technology and high-throughput multi-modal multi-omics experimental techniques. Taking the network target analysis of TCM like Yinqiao Qingre Tablets as a typical case, network target theory and technology have achieved the systematic construction, in-depth analysis, and high-throughput multi-modal multi-omics validation of multi-level biological networks spanning from traditional Chinese and Western phenotypes to tissues, cells, molecules, and traditional Chinese and Western medicines. This development helps to address critical issues in the analysis of mechanisms of TCM, including the discovery of key targets, identification of functional components, discovery of synergistic effects among compound ingredients, and elucidation of the regulatory mechanisms of formulae. It provides powerful theoretical and technological support for advancing clinical precision diagnosis and treatment, precise positioning of TCM, and precise research and development of TCM. Thus, a new paradigm of TCM research gradually emerges, combining big data and artificial intelligence(AI) with the integration of human experience and scientific evidence.
Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Humanos , Inteligência Artificial , Medicamentos de Ervas Chinesas/farmacologia , Tecnologia , Projetos de PesquisaRESUMO
Osteoporosis is a systematic bone disease,characterized by deterioration in bone mass or micro-architecture,and increasing risk of fragility and fractures. With the development of aging problems,osteoporosis has been a global health problem. At present,due to the undesirable side effects of synthetic osteoporosis inhibitors,more efforts are made in treatment of osteoporosis by traditional Chinese medicine and its prescriptions. Epimedii Folium,one of the most common herbs for osteoporosis,has attracted great attentions worldwide.In this study,network pharmacology was employed to analyze the active components and potential molecular mechanism of Epimedii Folium on osteoporosis. Component-target network analysis showed that those with higher molecular network degree were flavonoids,with estrogen-like activity,antioxidation and free radical-scavenging activities,playing certain roles in preventing and treating osteoporosis. On the other hand,the targets with high degree were mostly related with sex hormone,osteoclast differentiation,bone matrix degradation,and reactive oxygen species in drug-target network. Multiple components of Epimedii Folium could be interacted with these targets. This study shows that Epimedium could prevent and treat osteoporosis through multiple active ingredients acting on multiple targets.
Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Epimedium/química , Osteoporose/tratamento farmacológico , Humanos , Medicina Tradicional Chinesa , Folhas de Planta/química , Plantas Medicinais/químicaRESUMO
Mammalian coat color is one of the first phenotypic changes resulting from positive selection by humans, and it serves important roles in genetic and evolutionary processes. Among them, horses show a broad variety of coat color patterns, based on which it is difficult to distinguish the real phenotypes, resulting in confused records in horse breed registration. Thus, research in the genetic mechanisms on the development of coat color patterns is significant in horse reproduction and breeding. With the recent establishment of genomics and sequencing technologies, there are significant advances in research in the genetics of horse coat colors, which demonstrate that special coat colors could be associated with certain diseases. In this review, we classify horse coat colors from the perspective of genetics, and summarize the recent research progresses of the associated genes and molecular mechanisms on horse coat color development and its application, thereby providing references to further systematic research on horse coat color patterns and their practical uses in horse breeding.
Assuntos
Pelo Animal/química , Cavalos/genética , Pelo Animal/metabolismo , Animais , Cruzamento , Cor , Cavalos/metabolismo , FenótipoRESUMO
To investigate the best active compatibility of ginkgolide A, B and K (GAï¼GBï¼GK). The effects of GA, GB, GK alone, combinations of each two of them, and combinations of these three components on platelet-activating factor (PAF)-induced platelet aggregation activity and rat cerebral ischemia reperfusion model (tMCAO) were compared in this study. Different compatibilities of GA, GB and GK could significantly reduce the maximum aggregation rate of PAF-induced platelet aggregation, and the effect was most obvious in combination of the three. Different compatibilities of GA, GB and GK could alleviate the neural function, cerebral infarction volume and cerebral edema in the tMCAO model of rats to different degrees, and the effect of combinations of the three was stronger than those of combinations of two and single use. The combination of all of GA, GB and GK had the strongest effect on nerve injury caused by anti-platelet aggregation in tMCAO rats.
Assuntos
Isquemia Encefálica/tratamento farmacológico , Ginkgolídeos/farmacologia , Lactonas/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Fator de Ativação de Plaquetas/metabolismo , Agregação Plaquetária , RatosRESUMO
To investigate the protective effects of ginkgo diterpene lactone meglumine injection (GDLMI) on cerebral focal ischemia reperfusion injury induced by middle cerebral artery occlusion (MCAO) in rats, and explore its possible mechanism. One hundred and forty male SD rats were randomly divided into sham operation group, model group, ginkgo biloba extract injection (Ginaton, 1.0 mLâ¢kg⻹) group, nimodipine (0.4 mgâ¢kg⻹) group, and GDLMI (5.2, 2.6, 1.3 mgâ¢kg⻹) groups; All of rats received corresponding drugs by tail vein injection 4 days before operation (normal saline in model group and sham operation group). Except the sham operation group, the cerebral ischemic stroke model was established by MCAO method in right brain of the other rats. After 3 h of ischemia, all the animals received intravenous administration again. The neurobehavioral scores of rats after ischemia-reperfusion were evaluated and the infarct rate of brain tissue was observed by TTC staining. The super oxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA) and lactic acid (LA) contents in brain tissue homogenate and the concentration of Ca2+, glutamate (Glu) and aspartate (Asp), creatine phosphate kinase (CK-BB) and lactate dehydrogenase (LDH) content changes in cerebrospinal fluid were measured. As compared with the sham operation group, the cerebral infarction rate was increased significantly in the model group; the content of MDA and LA in the homogenate of brain tissue was increased, and the content of GSH and SOD was decreased; in cerebrospinal fluid, Ca2+ concentration was decreased, and the content of Glu and Asp, CK-BB and LDH increased significantly. As compared with the model group, the high and medium dose GDLMI groups can significantly reduce the cerebral infarction rate and improve the symptoms of neurological impairment; increase SOD and GSH activity, reduce MDA and LA content in serum; increase Ca2+ concentration in cerebrospinal fluid and decrease the content of neurotransmitter Glu and Asp as well as CK-BB and LDH. GDLMI could obviously improve neurologic impairment in model rats, and the mechanism may be related to recovering the blood brain barrier, scavenging free radicals, decreasing free Ca2+ inflow into the cells and the content of excitatory amino acid in cerebrospinal fluid to improve its protective effect on cerebral ischemia.
Assuntos
Isquemia Encefálica/tratamento farmacológico , Ginkgo biloba/química , Lactonas/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Terpenos/farmacologia , Animais , Ácido Aspártico/líquido cefalorraquidiano , Cálcio/líquido cefalorraquidiano , Creatina Quinase Forma BB/líquido cefalorraquidiano , Ácido Glutâmico/líquido cefalorraquidiano , Glutationa/análise , L-Lactato Desidrogenase/líquido cefalorraquidiano , Ácido Láctico/análise , Masculino , Malondialdeído/análise , Meglumina , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/análiseRESUMO
Network pharmacology method was adopted in this study to explore the active compounds and mechanism of Tongsaimai tablets for atherosclerosis. In molecular docking and molecular-target protein network analysis, 97 molecules in Tongsaimai tablets showed good interaction with the atherosclerosis-related target protein (docking score ≥ 7), and 37 molecules of them could act on more than 2 targets (≥ 2) with higher betweenness, suggesting that these 37 molecules might be the main active compounds group in Tongsaimai tablets for atherosclerosis treatment. Furthermore, the predicted active compounds contained more flavonoids and saponins, reminding more attention should be paid on flavonoids and saponins in study of effective compounds and quality standards of Tongsaimai tablets. Targets network analysis showed that, the active compounds of Tongsaimai tablets could regulate inflammation, stabilize plaque, protect vascular endothelial cell, regulate blood lipid and inhibit blood coagulation through acting on the main 22 target proteins, such as Toll-like receptors (TLR1, TLR2), matrix metalloproteinase (MMP1, MMP2, MMP3, MMP9), angiotensin converting enzyme (ACE), leukotriene A4 hydrolase (LTA4-H), 5-lipoxidase (5-LOX), peroxisome proliferators-activated receptors (PPARα, PPARγ). These active compounds can participate in regulating different pathologic stages of atherosclerosis and thus treat atherosclerosis finally. This study revealed the main active compounds and possible mechanism of Tongsaimai tablets for treatment of atherosclerosis and meanwhile, verified the characteristics of multi-components, multi-targets and integral regulation for Tongsaimai tablets, providing theoretical references for the following systematic laboratory experiments on effective compounds and action mechanism of Tongsaimai Tablet.
Assuntos
Aterosclerose/tratamento farmacológico , Medicamentos de Ervas Chinesas/química , Simulação de Acoplamento Molecular , Flavonoides , Humanos , ComprimidosRESUMO
The aim of this study was to investigate the anti-inflammatory effect of Guizhi Fuling capsule and its active complex (consistent of 15 active compounds) on LPS-induced RAW264. 7 cells. The effect of Guizhi Fuling capsule and its active complex on cell viability in RAW264. 7 cells were determined by MTT assay. The inhibitory effect of Guizhi Fuling capsule and active complex on the releasing of IL-1ß, TNF-α and PGE2 induced by LPS in RAW264. 7 cells was detected by ELISA assay. The expression of IL-1ß and mPGES-1 in Guizhi Fuling capsule or active complex treated RAW264. 7 cells was examined by Western blot assay. Guizhi Fuling capsule and active complex showed no significant effect on the cell viability in RAW264. 7 cells at doses range from 12.5 to 400 mg x L(-1). Compared with LPS treated group, Guizhi Fuling capsule and active complex dose dependently reduced the releasing of IL-1ß, TNF-α and PGE2 induced by LPS in RAW264. 7 cells. Moreover, the expression of IL-1ß and mPGES-1 was decreased after Guizhi Fuling capsule and active complex treatment, which might contribute to the inhibitory effect of Guizhi Fuling capsule in the releasing of IL-1ß, TNF-α and PGE2. This study provided the evidence that Guizhi Fuling capsule and active complex remarkably inhibited the releasing of IL-1ß, TNF-α and PGE2induced by LPS in RAW264. 7 cells by reducing the expression IL-1ß and mPGES-1. This study provided an experimental basis of Guizhi Fuling capsule for the treatment of inflammation and a theoretical basis for the development of effective compounds of Guizhi Fuling capsule.
Assuntos
Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Inflamação/imunologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Interleucina-1beta/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Fator de Necrose Tumoral alfa/imunologiaRESUMO
Qigui Tongfeng tablet (QLTFT) is a traditional Chinese medicine with good effect for treating gout. Here, network pharmacology method and molecular similarity analysis were utilized to study the effective substance basis and molecular mechanism of the QLTFT on the gout. The similarity to the medicinal compounds is reflected in the Tanimoto coefficient that gives the structural similarity of two compounds. Operationally, similar modifiers were described as pairs of concepts with a similarity score of 0. 500. The results of the molecular similarity analysis suggested that the flavonoids in QLTFT could be new leads for gout. Furthermore, complex biological systems may be represented and analyzed as computable networks. Two important properties of a network were degree and betweenness. Nodes with high degree or high betweenness may play important roles in the overall composition of a network. And the results of network analysis showed that dongbeinine, verticinone-N-oxide, verticine N-oxide, peimine, peiminine, isobaimonidine, dongbeirine, peimisine and simi-arenol which with high degree acted on xanthine dehydrogenase/oxidase, matrix metalloproteinase-9, an arachidonate 5-lipoxygenase-activating protein, tyrosine-protein kinase and etc. Inhibition of these targets can prevent the formation of uric acid, reduce inflammation by uric acid and regulate the body's immune response. Thus, these compounds may be the main effective substance basis. The research results not only reveals its molecular mechanism, but also provide a theoretical basis for the quality control of drugs and clinical application.
Assuntos
Gota/tratamento farmacológico , Medicina Tradicional Chinesa , Farmacologia/métodos , Humanos , Comprimidos , Tecnologia Farmacêutica/métodosRESUMO
In this study, the active components and potential molecular .mechanism of Guizhi Fuling formula in treatment on dysmenorrhea, pelvic inflammation, and hysteromyoma were investigated using network pharmacological methods. Sterols and pentacyclic triterpenes, with high moleculal network degree, revealed promising effects on anti-inflammatory, analgesic, anti-tumor, and immune-regulation, according to D-T network analysis. On the other hand, the targets with high degree were involved in inflammatory, coagulation, angiopoiesis, smooth muscle contraction, and cell reproduction, which showed the novel function in anti-dysmenorrhea, pelvic inflammation, and hysteromyoma. Furthermore, the formula was indicated to play a key role in smooth muscle proliferation, inhibition of new vessels, circulation improvement, reduction of hormone secretion, alleviation of smooth muscle, block of arachidonic acid metabolism, and inflammation in uterus. Thus, the main mechanism of Guizhi Fuling formula was summarized. In conclusion, Guizhi Fuling formula was proven to alleviated dysmenorrhea, pelvic inflammation, and hysteromyoma by acting on multiple targets through several bioactive compounds, regulating 21 biological pathways.
Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Dismenorreia/tratamento farmacológico , Dismenorreia/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Leiomioma/tratamento farmacológico , Leiomioma/genética , Doença Inflamatória Pélvica/tratamento farmacológico , Doença Inflamatória Pélvica/genética , Dismenorreia/metabolismo , Feminino , Humanos , Leiomioma/metabolismo , Doença Inflamatória Pélvica/metabolismoRESUMO
BACKGROUND: Chinese dragon's blood, the red resin of Dracaena cochinchinensis (Lour.) S. C. Chen., is widely used to treat cardiovascular and cerebrovascular diseases in China. Longxuetongluo Capsule (LTC) is a total phenolic compound extracted from Chinese dragon's blood, currently used in treating ischemic stroke. Myocardial injury can be aggravated after reperfusion of ischemic myocardium, which is called myocardial ischemia-reperfusion injury (MIRI), and the mechanism of MIRI is complex. However, the exact effect and mechanism of LTC on MIRI are still unclear. We explore the effect of LTC on alleviating MIRI based on mitochondrial dysfunction and oxidative stress. AIM OF THE STUDY: To explore the cardioprotective mechanism of LTC against MIRI. MATERIALS AND METHODS: A rat MIRI model was constructed through ligation of the left anterior descending coronary artery, and LTC was given continuously for 28 days before surgery. The H9c2 cardiomyocyte injury model was induced by oxygen-glucose deprivation/reperfusion (OGD/R), and LTC was given 24 h before OGD. Myocardial ischemia areas were detected with 2,3,5-triphenyltetrazolium chloride (TTC) staining. Cardiac histopathological changes were detected with hematoxylin-eosin (HE) staining. And biochemical indexes were detected with serum biochemical kit. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining and flow cytometry were used to detect apoptosis. Fluorescent probes were used to observe reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm), Ca2+and other indexes. MitoTracker staining and immunofluorescence were used to observe the morphology of mitochondria and translocation of dynamin-related protein 1 (Drp1). Finally, immunohistochemistry and Western blotting were used to examine the expression of proteins related to apoptosis, mitochondrial fission and fusion and oxidative stress. RESULTS: LTC could ameliorate cardiac pathological changes, decrease myocardial infarct area and the content or level of relevant serum cardiac enzymes, indicating that LTC could alleviate MIRI. Meanwhile, LTC could inhibit cardiomyocyte apoptosis via regulating apoptosis-related protein expression, and it could restore mitochondrial morphology, maintain ΔΨm, inhibit mitochondrial ROS generation and Ca2+ accumulation, increase the expression of mitochondrial fusion protein 2 (Mfn2), decrease the level of phosphorylation dynamin-related protein 1 (p-Drp1), and regulate ATP synthesis, thereby significantly ameliorating mitochondrial dysfunction. Moreover, LTC significantly reduced the expression of NADPH oxidase 2 (NOX2), NADPH oxidase 4 (NOX4) and neutrophil cytosolic factor 2 (NOXA2/p67phox), and reduced ROS production. CONCLUSION: The study demonstrated that LTC could inhibit MIRI induced cardiomyocyte apoptosis by inhibiting ROS generation and mitochondrial dysfunction, and these fundings suggested that LTC can be used to alleviate MIRI, which provides a potential therapeutic approach for future treatment of MIRI.
Assuntos
Apoptose , Medicamentos de Ervas Chinesas , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Estresse Oxidativo , Ratos Sprague-Dawley , Animais , Estresse Oxidativo/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Masculino , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Linhagem Celular , Dinaminas/metabolismoRESUMO
This study investigated the effects of concentration, intestinal section, pH and P-gp on the absorption of daphnetin. The absorptions of three concentrations (10, 20, 40 microg x mL(-1)) of daphnetin in different intestinal segments were studied with phenol red as the marker by in situ rats single pass perfusion model. The results showed that daphnetin was stable under pH 6.0 condition and little affected by metabolism enzyme. There was upgrade tendency between the Peff of duodenum, jejunum, ileum and colon in different concentration of daphnetin, and it has obvious difference between the high concentration and low concentration in jejunum and colon, which indicated that the absorption of daphnetin was passive diffusion and no difference in different segments of rat intestine. However, compared with colon, the absorption of small intestine was better significantly (P < 0.05). Daphnetin may be not a substrate of P-gp as verapamil had not significantly affected the absorption of daphnetin in different intestinal segments of rats.
Assuntos
Absorção Intestinal/efeitos dos fármacos , Perfusão , Umbeliferonas/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Feminino , Concentração de Íons de Hidrogênio , Masculino , Permeabilidade , Ratos , Ratos Sprague-DawleyRESUMO
Chinese medical herbs could treat complex diseases through the synergistic effect of multi-components, multi-targets and multi-channels. However, it was difficult to systematically investigate the pharmacological mechanisms of action due to the complex chemical composition and the lack of an effective research approach. Fortunately, network pharmacology as an integrated approach was proposed to systematically investigate and explain the underlying molecular mechanisms of Chinese medical herbs. Reduning injection (RDN) is one of the herbal injections for treatment of upper respiratory tract infections (URTIs). Previous studies revealed the molecular mechanism of RDN on URTIs through network pharmacology. In this work, the mechanism of RDN was verified by enzyme linked immunosorbent assay (ELISA), Western Blot, immunofluorescence assay and electrophoretic mobility shift assay (EMSA) in lipopolysaccharide (LPS)-induced RAW264.7 cells and enzyme assay. RDN dose-dependently suppressed the production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-6 (IL-6) and interleukin-1ß (IL-1ß), and reduced the protein expression of inducible NO synthetase (iNOS) and cyclooxygenase-2 (COX-2), which could be related to its suppression on the phosphorylations of mitogen-activated protein (MAP) kinases, including extracellular signal-regulated kinase (ERK), c-jun NH2-terminal kinase(JNK) and p38, as well as the activation and translocation of nuclear factor-κB (NF-κB). In addition, the activity of RDN on PGE2 was also partly attributed to the inhibition of COX-2 enzyme. Therefore, it can be concluded that RDN inhibited the production of inflammatory mediators and the macrophage activation to treat URTIs via down-regulating the activation of MAPK and NF-κB signaling pathways, which might pave a way to illustrate the molecular mechanism of herbs.