Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35957383

RESUMO

Visual object tracking has been a major research topic in the field of computer vision for many years. Object tracking aims to identify and localize objects of interest in subsequent frames, given the bounding box of the first frame. In addition, the object-tracking algorithms are also required to have robustness and real-time performance. These requirements create some unique challenges, which can easily become overfitting if given a very small training dataset of objects during offline training. On the other hand, if there are too many iterations in the model-optimization process during offline training or in the model-update process during online tracking, it will cause the problem of poor real-time performance. We address these problems by introducing a meta-learning method based on fast optimization. Our proposed tracking architecture mainly contains two parts, one is the base learner and the other is the meta learner. The base learner is primarily a target and background classifier, in addition, there is an object bounding box prediction regression network. The primary goal of a meta learner based on the transformer is to learn the representations used by the classifier. The accuracy of our proposed algorithm on OTB2015 and LaSOT is 0.930 and 0.688, respectively. Moreover, it performs well on VOT2018 and GOT-10k datasets. Combined with the comparative experiments on real-time performance, our algorithm is fast and robust.


Assuntos
Algoritmos , Aprendizagem
2.
IEEE Trans Image Process ; 22(1): 408-12, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23008250

RESUMO

Similarities inherent in natural images have been widely exploited for image denoising and other applications. In fact, if a cluster of similar image patches is rearranged into a matrix, similarities exist both between columns and rows. Using the similarities, we present a two-directional nonlocal (TDNL) variational model for image denoising. The solution of our model consists of three components: one component is a scaled version of the original observed image and the other two components are obtained by utilizing the similarities. Specifically, by using the similarity between columns, we get a nonlocal-means-like estimation of the patch with consideration to all similar patches, while the weights are not the pairwise similarities but a set of clusterwise coefficients. Moreover, by using the similarity between rows, we also get nonlocal-autoregression-like estimations for the center pixels of the similar patches. The TDNL model leads to an alternative minimization algorithm. Experiments indicate that the model can perform on par with or better than the state-of-the-art denoising methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA