RESUMO
A flexible N-doped carbon nanofiber membrane loaded with Nb and Ni nanoparticles (Nb/Ni@NC) was prepared using electrospinning technology and a subsequent thermal annealing method and used as a self-supporting anode material for lithium-ion batteries. The Nb/Ni@NC nanofiber membrane had excellent flexibility and could be folded and bent at will without fragmentation and wrinkling; the nanofibers also had a uniform and controllable morphology with a diameter of 300-400 nm. The electrochemical results showed that the flexible Nb/Ni@NC electrode could deliver a high discharge capacity of 378.7 mAh g-1 after 200 cycles at 0.2 A g-1 and an initial coulombic efficiency of 67.7%, which was higher than that of the pure flexible NC anode in contrast. Moreover, a reversible discharge capacity of 203.6 mAh g-1 after 480 cycles at 1.0 A g-1 was achieved by the flexible Nb/Ni@NC electrode with a capacity decay for each cycle of only 0.075%, which showed an excellent rate capability and cycling stability.
RESUMO
Low sulfur utilization and poor cycle life of the sulfur cathode with high sulfur loadings remain a great challenge for lithium-sulfur (Li-S) battery. Herein, the free-standing carbon film consisting of porous carbon nanofibers (PCNFs) and carbon nanotubes (CNTs) is successfully fabricated by the electrospinning technology. The PCNF/CNT film with three-dimensional and interconnected structure is promising for the uniformity of the high-loading sulfur, good penetration of the electrolyte, and reliable accommodation of volumetric expansion of the sulfur cathode. In addition, the abundant N/O-doped elements in PCNF/CNT film are helpful to chemically trap soluble polysulfides in the charge-discharge processes. Consequently, the obtained monolayer S/PCNF/CNT film as the cathode shows high specific capacity, excellent cycle stability, and rate stability with the sulfur loading of 3.9 mg cm-2. Moreover, the high areal capacity of 13.5 mA h cm-2 is obtained for the cathode by stacking three S/PCNF/CNT layers with the high sulfur loading of 12 mg cm-2. The stacking-layered cathode with high sulfur loading provides excellent cycle stability, which is beneficial to fabricate high-energy-density Li-S battery in future.
RESUMO
Microporous carbon polyhedrons (MCPs) are encapsulated into polyacrylonitrile (PAN) nanofibers by electrospinning the mixture of MCPs and PAN. Subsequently, the as-prepared MCPs-PAN nanofibers are employed as sulfur immobilizer for lithium-sulfur battery. Here, the S/MCPs-PAN multicomposites integrate the advantage of sulfur/microporous carbon and sulfurized PAN. Specifically, with large pore volume, MCPs inside PAN nanofibers provide a sufficient sulfur loading. While PAN-based nanofibers offer a conductive path and matrix. Therefore, the electrochemical performance is significantly improved for the S/MCPs-PAN multicomposite with a suitable sulfur content in carbonate-based electrolyte. At the current density of 160 mA g-1sulfur, the S/MPCPs-PAN composite delivers a large discharge capacity of 789.7 mAh g-1composite, high Coulombic efficiency of about 100% except in the first cycle, and good capacity retention after 200 cycles. In particular, even at 4 C rate, the S/MCPs-PAN composite can still release the discharge capacity of 370 mAh g-1composite. On the contrary, the formation of the thick SEI layer on the surface of nanofibers with a high sulfur content are observed, which is responsible for the quick capacity deterioration of the sulfur-based composite in carbonate-based electrolyte. This design of the S/MCPs-PAN multicomposite is helpful for the fabrication of stable Li-S battery.
RESUMO
The lithium-sulfur (Li-S) battery is expected to be the high-energy battery system for the next generation. Nevertheless, the degradation of lithium anode in Li-S battery is the crucial obstacle for practical application. In this work, a porous carbon paper obtained from corn stalks via simple treating procedures is used as interlayer to stabilize the surface morphology of Li anode in the environment of Li-S battery. A smooth surface morphology of Li is obtained during cycling by introducing the porous carbon paper into Li-S battery. Meanwhile, the electrochemical performance of sulfur cathode is partially enhanced by alleviating the loss of soluble intermediates (polysulfides) into the electrolyte, as well as the side reaction of polysulfides with metallic lithium. The Li-S battery assembled with the interlayer exhibits a large capacity and excellent capacity retention. Therefore, the porous carbon paper as interlayer plays a bifunctional role in stabilizing the Li anode and enhancing the electrochemical performance of the sulfur cathode for constructing a stable Li-S battery.