RESUMO
OBJECTIVE: This study aimed to assess the clinicoradiological features and treatment outcomes of intracranial dissecting aneurysms (IDAs) in childhood. METHODS: We conducted a retrospective study of pediatric patients who were treated for spontaneous IDAs in our institute between January 2010 and December 2015. The clinical presentation, aneurysm characteristics, treatment modality, and outcome were studied. RESULTS: We studied 26 pediatric patients (mean age, 13.4 years; range, 4-18 years) with 31 IDAs who comprised 6.9% of all IDA patients treated during the same period. Seventeen (65.4%) patients were males, and nine (34.6%) were females. The incidence of large (≥10 mm in size) or giant aneurysms (≥25 mm in size) was 65.5%. Twenty-one (80.8%) patients underwent endovascular or surgical treatment and five (19.2%) received conservative treatment. Perioperative complications occurred in three patients, in whom two eventually recovered completely with a Glasgow Outcome Scale (GOS) score of 5 and one partially recovered with a GOS score 4. Overall, 25 (96.2%) patients had a favorable outcome and one (3.8%) had an unfavorable outcome at a mean follow-up of 22.8 months (range, 6-60 months). CONCLUSION: Pediatric IDAs are rare. In this series, endovascular management was a relatively safe and effective method of treatment for pediatric IDAs. However, continued follow-up is required because of the possibility of aneurysm recurrence and de novo aneurysm formation after treatment.
RESUMO
BACKGROUND: Stent placement has been widely used to assist coiling in cerebral aneurysm treatments. The present study aimed to investigate the hemodynamic effects of stenting on wide-necked intracranial aneurysms. METHODS: Three idealized plexiglass aneurismal models with different geometries before and after stenting were created, and their three-dimensional computational models were constructed. Flow dynamics in stented and unstented aneurismal models were studied using in vitro flow visualization and computational fluid dynamics (CFD) simulations. In addition, effects of stenting on flow dynamics in a patient-specific aneurysm model were also analyzed by CFD. RESULTS: The results of flow visualization were consistent with those obtained with CFD simulations. Stent deployment reduced vortex inside the aneurysm and its impact on the aneurysm sac, and decreased wall shear stress on the sac. Different aneurysm geometries dictated fundamentally different hemodynamic patterns and outcomes of stenting. CONCLUSIONS: Stenting across the neck of aneurysms improves local blood flow profiles. This may facilitate thrombus formation in aneurysms and decrease the chance of recanalization.