Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytother Res ; 38(8): 4307-4320, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38973353

RESUMO

American ginseng (AG) has been reported to have anti-inflammatory effects in many diseases, but the key molecules and mechanisms are unclear. This study aims to evaluate the anti-inflammatory mechanism of AG and identify the key molecules by in vivo and in vitro models. Zebrafish was employed to assess the anti-inflammatory properties of AG and the compounds. Metabolomics was utilized to identify potential anti-inflammatory molecules in AG, while molecular dynamics simulations were conducted to forecast the interaction capabilities of these compounds with inflammatory targets. Additionally, macrophage cell was employed to investigate the anti-inflammatory mechanisms of the key molecules in AG by enzyme-linked immunosorbent assay and western blotting. Seven potential anti-inflammatory molecules were discovered in AG, with ginsenoside Rg1, ginsenoside Rs3 (G-Rs3), and oleanolic acid exhibiting the strongest affinity for signal transducer and activator of transcription 3. These compounds demonstrated inhibitory effects on macrophage migration in zebrafish models and the ability to regulate ROS levels in both zebrafish and macrophages. The cell experiments found that ginsenoside Rg1, ginsenoside Rs3, and oleanolic acid could promote macrophage M2/M1 polarization ratio and inhibit phosphorylation overexpression of signal transducer and activator of transcription 3. This study revealed the key anti-inflammatory molecules and mechanisms of AG, and provided new evidence of anti-inflammatory for the scientific use of AG.


Assuntos
Anti-Inflamatórios , Ginsenosídeos , Macrófagos , Panax , Fator de Transcrição STAT3 , Peixe-Zebra , Animais , Panax/química , Anti-Inflamatórios/farmacologia , Fator de Transcrição STAT3/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Ginsenosídeos/farmacologia , Ginsenosídeos/química , Fosforilação/efeitos dos fármacos , Células RAW 264.7 , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Simulação de Dinâmica Molecular
2.
Molecules ; 27(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35807320

RESUMO

Phytotherapy offers obvious advantages in the intervention of Coronary Artery Disease (CAD), but it is difficult to clarify the working mechanisms of the medicinal materials it uses. DGS is a natural vasoprotective combination that was screened out in our previous research, yet its potential components and mechanisms are unknown. Therefore, in this study, HPLC-MS and network pharmacology were employed to identify the active components and key signaling pathways of DGS. Transgenic zebrafish and HUVECs cell assays were used to evaluate the effectiveness of DGS. A total of 37 potentially active compounds were identified that interacted with 112 potential targets of CAD. Furthermore, PI3K-Akt, MAPK, relaxin, VEGF, and other signal pathways were determined to be the most promising DGS-mediated pathways. NO kit, ELISA, and Western blot results showed that DGS significantly promoted NO and VEGFA secretion via the upregulation of VEGFR2 expression and the phosphorylation of Akt, Erk1/2, and eNOS to cause angiogenesis and vasodilation. The result of dynamics molecular docking indicated that Salvianolic acid C may be a key active component of DGS in the treatment of CAD. In conclusion, this study has shed light on the network molecular mechanism of DGS for the intervention of CAD using a network pharmacology-driven strategy for the first time to aid in the intervention of CAD.


Assuntos
Doença da Artéria Coronariana , Medicamentos de Ervas Chinesas , Animais , Doença da Artéria Coronariana/tratamento farmacológico , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases/metabolismo , Fitoterapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Peixe-Zebra/metabolismo
3.
J Cosmet Dermatol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923657

RESUMO

BACKGROUND: Natural herbs have been widely considered a reservoir for skin-lightening ingredients, but discovery of the effective ingredients from herbs remains a large challenge. AIM: This research aimed to rapidly identify compounds with skin-lightening activity in Chinese herbs. METHODS: The structure information of herbal compounds was collected and selected from the open-source data. High throughput virtual screening (HTVS) and Extra precision (XP) docking modes were used to screen for compounds that could bind to the mushroom tyrosinase involved in melanin synthesis. Furthermore, molecular dynamics (MD) simulations were introduced to assess the binding stability of those compounds with the key target protein. The candidate compounds found by this kind of multidimensional molecular screening were finally tested for their ability to inhibit pigmentation and potential toxicity using an in vivo zebrafish animal model. RESULTS: A Natural Compounds Database was established with 5616 natural compounds. Fourteen compounds with favorable binding capability were screened by the XP docking mode with mushroom tyrosinase and five compounds among them were found to have superior dynamic binding performance through MD simulations. Then the Zebrafish animal experiments revealed that two components, sennoside B (SB) and sennoside C (SC), could significantly inhibit melanogenesis rather than the other three compounds. Meanwhile, there were no obvious side effects observed in SB and SC about the morphology, heart rate, or body length of zebrafish. CONCLUSION: A strategy for rapid screening of compounds with whitening activity has been established, and two potent skin-lightening compounds, SB and SC, have been identified from a vast library of herbal compounds. This study revealed that SB and SC have potential for topical use in skin lightening for the first time. The findings of this study would provide an important theoretical basis for the application of these two compounds in the cosmetic field in the future.

4.
Front Pharmacol ; 13: 909084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313322

RESUMO

Background: American ginseng (Panax quinquefolium L., AG) is a traditional Chinese medicine with multiple cardiovascular protective properties. Many bioactive components have been discovered in AG over these years. However, the understanding of these key pharmacodynamic components of activity against heart failure is insufficient. Methods: A heart failure model was established using AB line wild-type zebrafish (Danio rerio) to evaluate the anti-heart failure activity of AG. Untargeted metabolomics analysis based on ultra-high performance liquid chromatography-quadrupole electrostatic field orbitrap-mass spectrometry technology (UHPLC-QE-Orbitrap-MS) was performed to screen differential components from AG samples. The potential active components were verified using the zebrafish model. Simultaneously, network pharmacology and molecular docking techniques were used to predict the possible mechanism. Finally, the key targets of six key pharmacodynamic components were verified in zebrafish using quantitative real-time-polymerase chain reaction (Q-PCR) techniques. Results: The heart failure model was successfully established in 48 h of post-fertilization (hpf) zebrafish larvae by treating with verapamil hydrochloride. The zebrafish assay showed that the anti-heart failure effects of AG varied with producing regions. The result of the herbal metabolomic analysis based on UHPLC-QE-Orbitrap-MS indicated that ginsenoside Rg3, ginsenoside Rg5, ginsenoside Rg6, malic acid, quinic acid, L-argininosuccinic acid, 3-methyl-3-butenyl-apinosyl (1→6) glucoside, pseudoginsenoside F11, and annonaine were differential components, which might be responsible for variation in efficacy. Further analysis using zebrafish models, network pharmacology, and Q-PCR techniques showed that ginsenoside Rg3, ginsenoside Rg5, ginsenoside Rg6, malic acid, quinic acid, and pseudoginsenoside F11 were the pharmacodynamic markers (P-markers) responsible for anti-heart failure. Conclusion: We have rapidly identified the P-markers against heart failure in AG using the zebrafish model and metabolomics technology. These P-markers may provide new reference standards for quality control and new drug development of AG.

5.
Front Pharmacol ; 13: 901460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721161

RESUMO

AIM OF THE STUDY: Ischemic diseases have a huge impact on people's health, which can cause blood supply blockage or restriction in specific tissues. Researchers must develop novel drugs with great efficacy and low toxicity for the prevention and treatment of such diseases. Isopropyl caffeic acid (KYZ) was one of the metabolites of caffeic acid in vivo. This study is to explore the protective effect and mechanism of KYZ on ischemic disease from the perspective of angiogenesis in vivo and in vitro, providing support for the treatment of ischemic diseases and the discovery of a new candidate drug. METHODS: The network pharmacology and molecular docking were used to predict the targets of KYZ. In addition, the effects of KYZ on damaged and normal blood vessels were evaluated using the Tg (fli1: EGFP) transgenic zebrafish. The HUVECs model was used to study the effects of KYZ on proliferation, migration, and tube formation. The same dosage of caffeic acid (CA) was also administered in vitro and in vivo at the same time to assess the pharmacodynamic difference between the two compounds. Western Blot and ELISA methods were used to detect the expression of related target proteins. RESULTS: The result from the network pharmacology indicated that the targets of KYZ were related to angiogenesis. It was also found that KYZ could repair the vascular damage induced by the PTK787 and promote the growth of subintestinal vessels in normal zebrafish. The result also indicated that KYZ's angiogenic ability is better than the precursor compound CA. In HUVECs, KYZ could promote cell proliferation, migration, and tube formation. Further mechanistic study suggested that the KYZ could induce the release of VEGF factor in HUVECs, up-regulate the expression of VEGFR2, and activate the PI3K/AKT and MEK/ERK signaling pathways. CONCLUSIONS: These data show that KYZ may promote angiogenesis through VEGF, PI3K/AKT, and MEK/ERK signaling pathways, suggesting that KYZ exhibited great potential in the treatment of ischemic cardio-cerebrovascular diseases.

6.
Front Pharmacol ; 12: 705498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248647

RESUMO

Background: Gardenia Fructus (GF), a traditional Chinese medicine of Gardenia Ellis in Rubiaceae family, has the potential to clear heat and purge fire and has been widely used to treat multiple infection-related diseases. However, the quality markers (Q-Markers) of GF have not been revealed comprehensively. Methods: In this experiment, the transgenic zebrafish lines, Tg (l-fabp:EGFP) and Tg (lyz:EGFP), were used to evaluate two main kinds of traditional efficacies of GF, hepatoprotective and anti-inflammatory effects. All the GF samples from different production areas were tested their anti-liver injury and anti-inflammantory activities. High-performance liquid chromatography-quadrupole time-of-flight mass spectrometry method (HPLC-Q-TOF/MS) was employed for herbal metabonomic analysis of GF samples. Gray correlation analysis (GCA) was utilized to screen out the components closely associated with the activities. Finally, the zebrafish model was applied to verify the bioactivity of the crucial components to determine the Q-Markers of GF. Results: The zebrafish models were established by inducing with hydrogen peroxide or copper sulfate and applied to quickly evaluate the hepatoprotective effect and inflammation of GF samples. 27 potentially active components for liver protection and 21 potentially active components with anti-inflammatory properties were identified by herbal metabolomic analysis based on HPLC-Q-TOF/MS. The GCA result showed that five of the 27 components were highly correlated with liver protection, 15 of the 21 components were highly correlated with anti-inflammatory activity. Among them, geniposide and crocin-1 were confirmed their bioactivities on zebrafish experiment to be responsible for the protective effects of GF against liver injury, and genipin-1-ß-D-gentiobioside, quinic acid, gardenoside, d-glucuronic acid, l-malic acid, mannitol, rutin, and chlorogenic acid were confirmed to be responsible for the anti-inflammatory effects. Finally, according to the screening principles of Q-Markers, genipin-1-ß-D-gentiobioside, geniposide, and gardenoside were preliminarily identified to be the Q-Markers of GF. Conclusion: This study established an effective research strategy of "Omics Discrimination-Grey Correlation-Biological Verification," which enabled the rapid identification of key pharmacological components of GF. These markers have provided a scientific basis for constructing a modern quality evaluation system for GF.

7.
J Ethnopharmacol ; 253: 112679, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32101773

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gardenia Fructus (GF), a traditional Chinese medicine for clearing heat and purging fire, has been reported to use to treat thrombotic related diseases, but the antithrombotic components are not clear. AIM OF THE STUDY: To develop efficient research methods for discovering some representative antithrombotic compounds of GF. MATERIALS AND METHODS: AB line zebrafish induced by arachidonic acid (AA) was used as a fast and trace-sample-required valuation model for antithrombptic effect of GF samples. Among nine samples of GF from different production areas, two samples with the largest difference in bioactivity were selected for downstream analysis. High-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF/MS) was applied to detect compounds in the GF samples. And herbal metabolomics and grey correlation analysis (GCA) were used to identify crucial compounds with potential antithrombotic activity. Then the bioactivity of those important compounds was verified on the zebrafish model. Network pharmacology was used to explore the protein targets and signaling pathways of these compounds. RESULTS: Among the GF samples, S1 (Huoshan City, Anhui Province), and S6 (Jichun City, Hubei Province), significantly differed in thrombus inhibiting bioactivity. HPLC-Q-TOF/MS identified a total of 614 compounds in each GF sample. 19 compounds were selected as important potential variables from metabolomics data by orthogonal partial least squares discriminant analysis (OPLS-DA). And 10 compounds among them were further found to be positively correlated with the antithrombotic bioactivity of GF by GCA. Finally, 3 compounds in them, geniposide, citric acid, and quinic acid, were confirmed as representative antithrombotic chemical markers of GF. Using network pharmacology analysis, some key protein targets, such as proto-oncogene tyrosine-protein kinase Src (SRC) and cyclin-dependent kinase 2 (CDK2), and some signaling pathways were found to supply powerful evidence about antithrombotic mechanisms of three compounds and GF. CONCLUSIONS: This research have succeeded to discover and identify three representative antithrombotic compounds of GF using an efficient integrated research strategy we established, an Omics Discriminant-Grey Correlation-Biological Activity strategy. The antithrombotic chemical makers we found could also contribute to provided more accurate index components for comprehensive quality control of GF.


Assuntos
Fibrinolíticos/uso terapêutico , Gardenia , Extratos Vegetais/uso terapêutico , Trombose/tratamento farmacológico , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Embrião não Mamífero , Feminino , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Frutas , Masculino , Metabolômica , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Mapas de Interação de Proteínas , Trombose/metabolismo , Peixe-Zebra
8.
Sci Total Environ ; 683: 341-350, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31132713

RESUMO

The recent development of microwave radiation technology has increased the application possibilities of waste tobacco stems (WTSs). In this study, the morphology and microwave absorption properties of tobacco stem materials as well as the pyrolysis of the resultant biomass (BMTS) were studied via thermogravimetry-differential scanning calorimetry (TG-DSC), scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), and a vector network analysis (VNA). The results show that the BMTS pyrolysis involves four stages in air: dehydration, heat transfer, pyrolysis, and carbonisation, and it involves three stages in N2: moisture evaporation, de-volatilization, and charring. The microwave-assisted expansion of WTSs can improve the pore diameter and total porosity of the expanded tobacco stems (ETSs) and BMTS. The latter is a macroporous material with a total porosity of 78.2% and a probable pore size of 29.5 µm. Its pore size distribution ranges from 10.7 nm to 227 µm. The microwave absorption properties of the WTSs are affected by the moisture content, bulk density, and grain size; the properties can be enhanced by decreasing the grain size and increasing the moisture content and bulk density within the experimental range. The 3 dB bandwidth and amplitude vary by 0.45 MHz and - 0.406 dB per 1% increase in the moisture content of the materials, respectively. Our results demonstrate that tobacco stem materials with different moisture contents and grain sizes should be classified before the expansion or re-drying steps to ensure heating uniformity and product quality during the microwave radiation treatment.


Assuntos
Micro-Ondas , Nicotiana/química , Caules de Planta/química , Varredura Diferencial de Calorimetria , Caules de Planta/efeitos da radiação , Porosidade , Pirólise , Termogravimetria , Nicotiana/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA