RESUMO
Electrocatalytic synthesis of hydrogen peroxide (H2O2) in acidic media is an efficient and eco-friendly approach to produce inherently stable H2O2, but limited by the lack of selective and stable catalysts under industrial-relevant current densities. Herein, we report a diatomic cobalt catalyst for two-electron oxygen reduction to efficiently produce H2O2 at 50-400 mA cm-2 in acid. Electrode kinetics study shows a >95% selectivity for two-electron oxygen reduction on the diatomic cobalt sites. In a flow cell device, a record-high production rate of 11.72 mol gcat-1 h-1 and exceptional long-term stability (100 h) are realized under high current densities. In situ spectroscopic studies and theoretical calculations reveal that introducing a second metal into the coordination sphere of the cobalt site can optimize the binding strength of key H2O2 intermediates due to the downshifted d-band center of cobalt. We also demonstrate the feasibility of processing municipal plastic wastes through decentralized H2O2 production.
RESUMO
Heterogeneous catalysts containing diatomic sites are often hypothesized to have distinctive reactivity due to synergistic effects, but there are limited approaches that enable the convenient production of diatomic catalysts (DACs) with diverse metal combinations. Here, we present a general synthetic strategy for constructing a DAC library across a wide spectrum of homonuclear (Fe2, Co2, Ni2, Cu2, Mn2, and Pd2) and heteronuclear (Fe-Cu, Fe-Ni, Cu-Mn, and Cu-Co) bimetal centers. This strategy is based on an encapsulation-pyrolysis approach, wherein a porous material-encapsulated macrocyclic complex mediates the structure of DACs by preserving the main body of the molecular framework during pyrolysis. We take the oxygen reduction reaction (ORR) as an example to show that this DAC library can provide great opportunities for electrocatalyst development by unlocking an unconventional reaction pathway. Among all investigated sites, Fe-Cu diatomic sites possess exceptional high durability for ORR because the Fe-Cu pairs can steer elementary steps in the catalytic cycle and suppress the troublesome Fenton-like reactions.
RESUMO
BACKGROUND: It is a big challenge to repair a large abdominal wall defect after tumor resection, and en bloc resection with vascularized tissue reconstruction might be an alternative to achieve an improved survival for abdominal wall tumors. CASE PRESENTATION: A 45-year-old woman presented with a 1-year history of persistent abdominal pain of the right lower quadrant and a mass with dermal ulceration. An enhanced computed tomography scan and biopsy of the mass were performed to achieve the definite diagnosis of abdominal mucinous adenocarcinoma. After four courses of "FOLFOX" chemotherapy, the tumor grew to 6 × 5 cm during preoperative examination. Thereafter, we removed the tumor and involved tissues and organs and repaired the sizeable abdominal wall defect used by biological meshes and vascularized anterolateral thigh flaps. The patient suffered green drainage of 450 ml in the abdominal cavity and intestinal anastomotic fistula, for which she readmitted and recovered afterward. CONCLUSIONS: Biological mesh combined with vascularized anterolateral thigh flaps could effectively repair the large abdominal wall defect and restore the biological function of the abdominal wall.
Assuntos
Parede Abdominal , Adenocarcinoma Mucinoso , Procedimentos de Cirurgia Plástica , Parede Abdominal/cirurgia , Adenocarcinoma Mucinoso/cirurgia , Feminino , Humanos , Pessoa de Meia-Idade , Procedimentos de Cirurgia Plástica/métodos , Retalhos Cirúrgicos/cirurgia , Coxa da Perna/cirurgiaRESUMO
OBJECTIVES: To investigate the sleep patterns and characteristics of infants and young children and the association between sleep patterns and breastfeeding. METHODS: A general information questionnaire, Brief Infant Sleep Questionnaire (BISQ), and a questionnaire on feeding were used to investigate the sleep quality and feeding patterns of 1 148 infants and young children aged 7-35 months. The K-means clustering method was used to identify sleep patterns and characteristics. A multivariate logistic regression analysis was used to investigate the association between sleep patterns and breastfeeding. RESULTS: Three typical sleep patterns were identified for the 1 148 infants and young children aged 7-35 months: early bedtime and long sleep time; short sleep latency and moderate sleep time; late bedtime, prolonged sleep latency, and insufficient sleep time. The third pattern showed sleep disorders. The multivariate logistic regression analysis showed that compared with formula feeding, exclusive breastfeeding within 6 months after birth reduced the risk of sleep disorder patterns by 69% (OR=0.31, 95%CI: 0.11-0.81). The risk of sleep disorder patterns was reduced by 40% (OR=0.60, 95%CI: 0.38-0.96) in the infants receiving breastfeeding for 4-6 months compared with those receiving breastfeeding for 1-3 months. CONCLUSIONS: There are different sleep patterns in infants and young children, and breastfeeding can reduce the development of sleep disorder patterns.
Assuntos
Aleitamento Materno , Transtornos do Sono-Vigília , Lactente , Criança , Feminino , Humanos , Pré-Escolar , Inquéritos e Questionários , Sono , Análise por ConglomeradosRESUMO
The Bambusa-Dendrocalamus-Gigantochloa complex (BDG complex) is the most diversified and phylogenetically recalcitrant group of the paleotropical woody bamboos. Species of this complex occur in tropical and subtropical Asia and most of them are of great economic, cultural and ecological value. The lack of resolution achieved through the analyses of previous molecular datasets has long confounded its phylogenetic estimation and generic delimitation. Here, we adopted a ddRAD-seq strategy to investigate phylogenetic relationships of the four main genera (Bambusa, Dendrocalamus, Gigantochloa, and Melocalamus) in the BDG complex. A total of 102 species were sampled, and SNP data were generated. Both MP and ML analyses of the ddRAD-seq data resulted in a well-resolved topology with Gigantochloa and Melocalamus confirmed as monophyletic, and Melocalamus resolved as sister to the rest of the complex. Bambusa and Dendrocalamus were both resolved as paraphyletic. The phylogenetic relationships were mostly supported by morphological evidence including characters of the branch complement, rachilla, lodicules, filaments and stigma. We also generated and assembled complete plastid genomes of 48 representative species. There were conflicts between the plastome and the ddRAD topologies. Our study demonstrated that RAD-seq can be used to reconstruct evolutionary history of lineages such as the bamboos where ancient hybridization and polyploidy play a significant role. The four genera of the BDG complex have a complex evolutionary history which is likely a product of ancient introgression events.
Assuntos
Bambusa/classificação , Poaceae/classificação , Ásia , Bambusa/genética , Evolução Biológica , Genomas de Plastídeos , Hibridização Genética , Filogenia , Poaceae/anatomia & histologia , Poaceae/genética , Polimorfismo de Nucleotídeo Único , Poliploidia , Análise de Sequência de DNARESUMO
With the development of sequencing technologies, the use of multiple nuclear genes has become conventional for resolving difficult phylogenies. However, this technique also presents challenges due to gene-tree discordance, as a result of incomplete lineage sorting (ILS) and reticulate evolution. Although alleles can show sequence variation within individuals, which contain information regarding the evolution of organisms, they continue to be ignored in almost all phylogenetic analyses using randomly phased genome sequences. Here, we tried to incorporate alleles from multiple nuclear loci to study the phylogeny of the economically important bamboo genus Phyllostachys (Poaceae, Bambusoideae). Obtaining a total of 3926 sequences, we documented extensive allelic variation for 61 genes from 39 sampled species. Using datasets consisting of selected alleles, we demonstrated substantial discordance among phylogenetic relationships inferred from different alleles, as well as between concatenation and coalescent methods. Furthermore, ILS and hybridization were suggested to be underlying causes of the discordant phylogenetic signals. Taking these possible causes for conflicting phylogenetic results into consideration, we recovered the monophyly of Phyllostachys and its two morphology-defined sections. Our study also suggests that alleles deserve more attention in phylogenetic studies, since ignoring them can yield highly supported but spurious phylogenies. Meanwhile, alleles are helpful for unraveling complex evolutionary processes, particularly hybridization.
Assuntos
Alelos , Núcleo Celular/genética , Loci Gênicos , Variação Genética , Filogenia , Poaceae/classificação , Poaceae/genética , Sequência de Bases , Teorema de Bayes , Bases de Dados Genéticas , Evolução Molecular , Hibridização Genética , Especificidade da EspécieRESUMO
Mixed-anion compounds play an essential part in modern structural chemistry. In this Communication, an unprecedented hexanary oxysulfide, [(Ba19Cl4)(Ga6Si12O42S8)] (FJ-1), was synthesized at 1073 K by a standard solid-state method, which is a new phase in the AE/MIII/MIV/O/Q/X (AE = alkaline-earth metal; MIII = group 13 metal; MIV = group 14 metal; Q = chalcogen; X = halogen) system. FJ-1 adopts a new structure type and crystallizes in the orthorhombic system with space group Cmcm. In the structure, unique two-dimensional [Ga6Si12O42S8]34- layers formed by the familiar [SiO4] species and unusual heteroligand [GaO2S2] and [GaO3S] tetrahedra extend the intralayer linking. Significantly, a photoelectrochemical test revealed that FJ-1 is photoresponsive under ultraviolet illumination. Moreover, density functional theory calculations were employed to gain insight into the relationship between the electronic structure and optical properties. Such work will be conducive to the structural diversity of gallium coordination chemistry by exploration of the new mixed-anion functional chalcohalides.
RESUMO
A novel niobium oxyiodate sulfate, Nb2 O3 (IO3 )2 (SO4 ), was fabricated by a rational multi-component design under moderate hydrothermal conditions. This multi-component design is inspired by an interesting niobium oxysulfate reaction, which opens a new door for synthetic method to effectively introduce refractory metals such as Nb into crystal structures by hydrothermal synthesis. Nb2 O3 (IO3 )2 (SO4 ) features a cube-like topological structure with a large phase-matching second harmonic generation (SHG) response (6×KDP), a wide transparency window (0.38-8â µm), and a high laser damage threshold (LDT) (20×AgGaS2 ). It has the highest thermostability (stable up to 580 °C under air) among reported non-centrosymmetric (NCS) iodates and sulfates and is stable in water and even concentrated H2 SO4 . Furthermore, Nb2 O3 (IO3 )2 (SO4 ) is a unique nonlinear optical (NLO) material among iodates and sulfates, because its SHG effect is mainly caused by the MO6 units rather than the IO3 or SO4 units, which is demonstrated by density functional theory (DFT) calculations.
RESUMO
Polymeric nanoparticles have been widely investigated as insulin delivery systems for oral administration. However, the toxic nature of many artificial polymers hampers their effective application, creating a demand for the further exploration of alternative natural polymers. In addition, ethnobotanical research has reported that over 800 plant species have a hypoglycemic function, some of which are polymers. For the advantages of both areas to be combined, the aim of this work was to choose an organic hypoglycemic polymer and prepare it into an insulin carrier to build a dual-functional oral insulin delivery system. We found that the insulin loading rate, release mode, thermostability, and both in vitro and in vivo absorption and efficacy varied with the different modifications of polygalacturonic acid (PGLA) nanoparticulate backbones. By in vivo pharmaceutical testing and constantly monitoring the symptoms of type 1 diabetic (T1D) rats, we ascertained the hypoglycemic function of the nanoparticles and showed that overall diabetic symptoms were ameliorated after the long-term daily administration of nanoparticles with no significant damage to organ structure or cell viability.
Assuntos
Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/química , Insulina/administração & dosagem , Insulina/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Administração Oral , Animais , Peptídeos Catiônicos Antimicrobianos/química , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
In this paper we investigate the biogeography of the temperate woody bamboos (Arundinarieae) using a densely-sampled phylogenetic tree of Bambusoideae based on six plastid DNA loci, which corroborates the previously discovered 12 lineages (I-XII) and places Kuruna as sister to the Chimonocalamus clade. Biogeographic analyses revealed that the Arundinarieae diversified from an estimated 12 to 14Mya, and this was followed by rapid radiation within the lineages, particularly lineages IV, V and VI, starting from c. 7-8Mya. It is suggested that the late Miocene intensification of East Asian monsoon may have contributed to this burst of diversification. The possibilities of the extant Sri Lankan and African temperate bamboo lineages representing 'basal elements' could be excluded, indicating that there is no evidence to support the Indian or African route for migration of temperate bamboo ancestors to Asia. Radiations from eastern Asia to Africa, Sri Lanka, and to North America all are likely to have occurred during the Pliocene, to form the disjunct distribution of Arundinarieae we observe today. The two African lineages are inferred as being derived independently from Asian ancestors, either by overland migrations or long-distance dispersals. Beringian migration may explain the eastern Asian-eastern North American disjunction.
Assuntos
Filogenia , Plastídeos/genética , Poaceae/genética , Madeira , África , Ásia , América do Norte , Filogeografia , Poaceae/classificação , Sri Lanka , Madeira/genéticaRESUMO
The temperate woody bamboos constitute a distinct tribe Arundinarieae (Poaceae: Bambusoideae) with high species diversity. Estimating phylogenetic relationships among the 11 major lineages of Arundinarieae has been particularly difficult, owing to a possible rapid radiation and the extremely low rate of sequence divergence. Here, we explore the use of chloroplast genome sequencing for phylogenetic inference. We sampled 25 species (22 temperate bamboos and 3 outgroups) for the complete genome representing eight major lineages of Arundinarieae in an attempt to resolve backbone relationships. Phylogenetic analyses of coding versus noncoding sequences, and of different regions of the genome (large single copy and small single copy, and inverted repeat regions) yielded no well-supported contradicting topologies but potential incongruence was found between the coding and noncoding sequences. The use of various data partitioning schemes in analysis of the complete sequences resulted in nearly identical topologies and node support values, although the partitioning schemes were decisively different from each other as to the fit to the data. Our full genomic data set substantially increased resolution along the backbone and provided strong support for most relationships despite the very short internodes and long branches in the tree. The inferred relationships were also robust to potential confounding factors (e.g., long-branch attraction) and received support from independent indels in the genome. We then added taxa from the three Arundinarieae lineages that were not included in the full-genome data set; each of these were sampled for more than 50% genome sequences. The resulting trees not only corroborated the reconstructed deep-level relationships but also largely resolved the phylogenetic placements of these three additional lineages. Furthermore, adding 129 additional taxa sampled for only eight chloroplast loci to the combined data set yielded almost identical relationships, albeit with low support values. We believe that the inferred phylogeny is robust to taxon sampling. Having resolved the deep-level relationships of Arundinarieae, we illuminate how chloroplast phylogenomics can be used for elucidating difficult phylogeny at low taxonomic levels in intractable plant groups.
Assuntos
Genoma de Cloroplastos/genética , Filogenia , Poaceae/classificação , Poaceae/genética , Dados de Sequência MolecularRESUMO
A new bamboo species, Yushaniadezhui, from Kunming, Yunnan, China is described and illustrated in this paper. The new species used to be misidentified as Y.polytricha. Based on careful comparison of morphological features and molecular phylogeny evidence, we confirmed its identity as a new member of the genus Yushania. Yushaniadezhui resembles Y.maculata, Y.polytricha and Y.weixiensis in several aspects, such as culm height and branch complement structure. However, the glabrous culm leaf sheaths and internodes, the absence of auricles and oral setae on most foliage leaves, except the one-year-old foliage leaves, the pubescence on the adaxial surface of the one-year-old foliage leaves and its limestone habitat preference can readily distinguish this new species from its related taxa. Moreover, we emphasise that individuals from various populations and molecular markers with different inheritance patterns for phylogeny reconstruction should be included in new species discovery, especially in plant groups with complex evolutionary histories.
RESUMO
[This corrects the article DOI: 10.1039/D3RA05529A.].
RESUMO
Periodontitis can lead to defects in the alveolar bone, thus increasing the demand for dependable biomaterials to repair these defects. This study aims to examine the pro-osteogenic and anti-bacterial properties of UPPE/ß-TCP/TTC composites (composed of unsaturated polyphosphoester [UPPE], ß-tricalcium phosphate [ß-TCP], and tetracycline [TTC]) under an inflammatory condition. The morphology of MC3T3-E1 cells on the composite was examined using scanning electron microscopy. The toxicity of the composite to MC3T3-E1 cells was assessed using the Alamar-blue assay. The pro-osteogenic potential of the composite was assessed through ALP staining, ARS staining, RT-PCR, and WB. The antimicrobial properties of the composite were assessed using the zone inhibition assay. The results suggest that: (1) MC3T3-E1 cells exhibited stable adhesion to the surfaces of all four composite groups; (2) the UPPE/ß-TCP/TTC composite demonstrated significantly lower toxicity to MC3T3-E1 cells; and (3) the UPPE/ß-TCP/TTC composite had the most pronounced pro-osteogenic effect on MC3T3-E1 cells by activating the WNT/ß-catenin pathway and displaying superior antibacterial properties. UPPE/ß-TCP/TTC, as a biocomposite, has been shown to possess antibacterial properties and exhibit excellent potential in facilitating osteogenic differentiation of MC3T3-E1 cells.
RESUMO
As the body's largest organ, the skin harbors a highly diverse microbiota, playing a crucial role in resisting foreign pathogens, nurturing the immune system, and metabolizing natural products. The dysregulation of human skin microbiota is implicated in immune dysregulation and inflammatory responses. This review delineates the microbial alterations and immune dysregulation features in common Inflammatory Skin Diseases (ISDs) such as psoriasis, rosacea, atopic dermatitis(AD), seborrheic dermatitis(SD), diaper dermatitis(DD), and Malassezia folliculitis(MF).The skin microbiota, a complex and evolving community, undergoes changes in composition and function that can compromise the skin microbial barrier. These alterations induce water loss and abnormal lipid metabolism, contributing to the onset of ISDs. Additionally, microorganisms release toxins, like Staphylococcus aureus secreted α toxins and proteases, which may dissolve the stratum corneum, impairing skin barrier function and allowing entry into the bloodstream. Microbes entering the bloodstream activate molecular signals, leading to immune disorders and subsequent skin inflammatory responses. For instance, Malassezia stimulates dendritic cells(DCs) to release IL-12 and IL-23, differentiating into a Th17 cell population and producing proinflammatory mediators such as IL-17, IL-22, TNF-α, and IFN-α.This review offers new insights into the role of the human skin microbiota in ISDs, paving the way for future skin microbiome-specific targeted therapies.
RESUMO
Arundinarieae is not only a taxonomically difficult group of bamboos, but also a troublesome one in molecular phylogenetics. In this study, the phylogeny of 50 species in Arundinarieae with an emphasis on Chimonocalamus was reconstructed, using four plastid regions (rpl32-trnL, trnT-trnL, rps16-trnQ and trnC-rpoB) and two nuclear genes (GBSSI and LEAFY). The plastid phylogeny was largely consistent with the previous studies, except that Ampelocalamus calcareus was newly recovered as lineage XI. The nuclear phylogeny of LEAFY had better resolution than the one of GBSSI. The close relationships among Ampelocalamus, Drepanostachyum and Himalayacalamus were retrieved by the nuclear datasets. Alpine Bashania, Chimonocalamus, Thamnocalamus, and species currently placed in Fargesia and Yushania formed a clade in the LEAFY and combined nuclear phylogenies. Some of the gene tree disparities revealed in previous studies were reconfirmed. Chimonocalamus was recovered as monophyletic by combining the nuclear genes, but as polyphyletic in plastid analyses. Insufficient informative characters, hybridization, plastid capture or incomplete plastid lineage sorting could be responsible for the incongruent phylogenetic positions of some species of Chimonocalamus.
Assuntos
Genes de Plantas , Plastídeos/genética , Poaceae/genética , Teorema de Bayes , Núcleo Celular/genética , Dosagem de Genes , Marcadores Genéticos , Funções Verossimilhança , Anotação de Sequência Molecular , Tipagem de Sequências Multilocus , Filogenia , Proteínas de Plantas/genética , Poaceae/classificação , Poaceae/enzimologia , Sintase do Amido/genética , Fatores de Transcrição/genéticaRESUMO
Three woody bamboo species collected in Hainan, China in 1940 have been described as Dinochloa based on vegetative specimens. However, the identity of these species has long been in doubt, largely because the vegetative phase in species of Dinochloa is morphologically similar to that in species of Melocalamus, a climbing or scrambling bamboo genus of the paleotropical woody bamboos (Poaceae: Bambusoideae) that consists of about 15 species and one variety. To determine the phylogenetic affinity of the three Dinochloa species from Hainan, we sampled almost all recognized Chinese species of Melocalamus and representative species of Dinochloa as well as other closely related genera, performed molecular phylogenetic analysis, and compared their morphology based on herbarium and fieldwork investigation. Our ddRAD data indicate that the three species from Hainan are closely related to Melocalamus, not Dinochloa. Morphological analysis showed that these three species have a climbing habit but do not grow spirally, their culm leaves have smooth bases, and there is a ring of powder and/or tomenta above and below the nodes. Taken together our findings indicate that the three species from Hainan originally published in Dinochloa should be transferred to Melocalamus, i.e., Melocalamus orenudus (McClure) D.Z. Li & J.X. Liu, Melocalamus puberulus (McClure) D.Z. Li & J.X. Liu, and Melocalamus utilis (McClure) D.Z. Li & J.X. Liu, respectively. This study concludes with an enumeration of Chinese species of Melocalamus, with a key to nine recognized species and one variety, and a lectotypification for M. compatiflorus.
RESUMO
Catalytic depolymerization represents a promising approach for the closed-loop recycling of plastic wastes. Here, we report a knowledge-driven catalyst development for poly(ethylene terephthalate) (PET) recycling, which not only achieves more than 23-fold enhancement in specific activity but also reduces the alkali concentration by an order of magnitude compared with the conventional hydrolysis. Substituted binuclear zinc catalysts are developed to regulate biomimetic intramolecular PET hydrolysis. Hammett studies and density functional theory (DFT) calculations indicate that the substituents modify the charge densities of the active centers, and an optimal substituent should slightly increase the electron richness of the zinc sites to facilitate the formation of a six-membered ring intermediate. The understanding of the structure-activity relationship leads to an advanced catalyst with a specific activity of 778 ± 40 gPET h-1 gcatal-1 in 0.1 M NaOH, far outcompeting the conventional hydrolysis using caustic bases (<33.3 gPET h-1 gcatal-1 in 1-5 M NaOH). This work opens new avenues for environmentally benign PET recycling.
RESUMO
Enveloped viruses encased within a lipid bilayer membrane are highly contagious and can cause many infectious diseases like influenza and COVID-19, thus calling for effective prevention and inactivation strategies. Here, we develop a diatomic iron nanozyme with lipoxidase-like (LOX-like) activity for the inactivation of enveloped virus. The diatomic iron sites can destruct the viral envelope via lipid peroxidation, thus displaying non-specific virucidal property. In contrast, natural LOX exhibits low antiviral performance, manifesting the advantage of nanozyme over the natural enzyme. Theoretical studies suggest that the Fe-O-Fe motif can match well the energy levels of Fe2 minority ß-spin d orbitals and pentadiene moiety π* orbitals, and thus significantly lower the activation barrier of cis,cis-1,4-pentadiene moiety in the vesicle membrane. We showcase that the diatomic iron nanozyme can be incorporated into air purifier to disinfect airborne flu virus. The present strategy promises a future application in comprehensive biosecurity control.
Assuntos
Alcadienos , Influenza Humana , Vírus , Humanos , Antivirais , Lipoxigenase , FerroRESUMO
The monophyly of tribe Arundinarieae (the temperate woody bamboos) has been unequivocally recovered in previous molecular phylogenetic studies. In a recent phylogenetic study, 10 major lineages in Arundinarieae were resolved based on eight non-coding plastid regions, which conflicted significantly with morphological classifications both at the subtribal and generic levels. Nevertheless, relationships among and within the 10 lineages remain unclear. In order to further unravel the evolutionary history of Arundinarieae, we used the nuclear GBSSI gene sequences along with those of eight plastid regions for phylogenetic reconstruction, with an emphasis on Chinese species. The results of the plastid analyses agreed with previous studies, whereas 13 primary clades revealed in the GBSSI phylogeny were better resolved at the generic level than the plastid phylogeny. Our analyses also revealed many inconsistencies between the plastid DNA and the nuclear GBSSI trees. These results implied that the nuclear genome and the plastid genome had different evolutionary trajectories. The patterns of incongruence suggested that lack of informative characters, incomplete lineage sorting, and/or hybridization (introgression) could be the causes. Seven putative hybrid species were hypothesized, four of which are discussed in detail on the basis of topological incongruence, chromosome numbers, morphology, and distribution patterns, and those taxa probably resulted from homoploid hybrid speciation. Overall, our study indicates that the tribe Arundinarieae has undergone a complex evolution.