Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Nature ; 611(7935): 271-277, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36070797

RESUMO

Conducting polymers (CPs) with high conductivity and solution processability have made great advances since the pioneering work on doped polyacetylene1-3, thus creating the new field of 'organic synthetic metals,4. Various high-performance CPs have been realized, which enable the applications of several organic electronic devices5,6. Nevertheless, most CPs exhibit hole-dominant (p-type) transport behaviour7,8, whereas the development of n-type analogues lags far behind and only a few exhibit metallic state, typically limited by low doping efficiency and ambient instability. Here we present a facilely synthesized highly conductive n-type polymer poly(benzodifurandione) (PBFDO). The reaction combines oxidative polymerization and in situ reductive n-doping, greatly increasing the doping efficiency, and a doping level of almost 0.9 charges per repeating unit can be achieved. The resultant polymer exhibits a breakthrough conductivity of more than 2,000 S cm-1 with excellent stability and an unexpected solution processability without extra side chains or surfactants. Furthermore, detailed investigations on PBFDO show coherent charge-transport properties and existence of metallic state. The benchmark performances in electrochemical transistors and thermoelectric generators are further demonstrated, thus paving the way for application of the n-type CPs in organic electronics.

2.
Inorg Chem ; 63(9): 4063-4071, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38364201

RESUMO

Treatment of Co(OTf)2·6H2O, Li[(pzTp)FeIII(CN)3], and H3PMo12O40·nH2O in protic solvents afforded two structurally related Fe-Co cyanometallate complexes: [{(pzTp)Fe(CN)3}3Co3(MeOH)10][PMo12O40]·H2O·11MeOH (1, pzTp- = tetra(pyrazolyl)borate) and {[(pzTp)Fe(CN)3]4Co3(MeOH)5(H2O)3}n[HPMo12O40]n·3 nMeOH·6.5nH2O (2). Complex 1 consists of a cyanide-bridged hexanuclear [Fe3Co3] cage, characterized by the fused conjunction of two mutually perpendicular trigonal bipyramids (TBPs, [Fe2Co3] and [Co2Fe3]), while complex 2 showcases an intricate cyanide-bridged Fe-Co tape comprising a central chain backbone of vertex-sharing [Fe2Co3] TBPs alongside peripheral [Fe2Co2] squares. Complex 2 is among the widest one-dimensional coordination assemblies characterized by the single-crystal X-ray diffraction technique. Magnetic studies revealed that complex 2 behaved as a single chain magnet with an effective energy barrier (Ueff/kB) of 46.8 K. Our findings highlight the possibilities in the development of cyanometallate-POM hybrid materials with captivating magnetic properties.

3.
Inorg Chem ; 62(42): 17530-17536, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37801447

RESUMO

Extending a selected cyanometalate block into a higher dimensional framework continues to present intriguing challenges in the fields of chemistry and material science. Here, we prepared two rope-like chain compounds of {[(Tp*Me)Fe(CN)3]2Cu2X2(L)}·sol (1, X = Cl, L = (MeCN)0.5(H2O/MeOH)0.5, sol = 2MeCN·1.5H2O; 2, X = Br, L = MeOH, sol = 2MeCN·0.75H2O; Tp*Me = tris(3, 4, 5-trimethylpyrazole)borate) in which the cyanide-bridged trigonal-bipyramidal [Fe2Cu3] subunits were linked with the adjacent ones via two vertex Cu(II) centers, providing a new cyanometallate chain archetype. Direct current magnetic study revealed the presence of ferromagnetic couplings between Fe(III) and Cu(II) ions and uniaxial anisotropy due to a favorable alignment of the anisotropic tricyanoiron(III) units. Moreover, compound 1 exhibits single-chain magnet behavior with an appreciable energy barrier of 72 K, while 2 behaves as a metamagnet, likely caused by the subtle changes in the interchain interactions.

4.
Angew Chem Int Ed Engl ; 62(29): e202301124, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37209064

RESUMO

The engineering of intermolecular interaction is challenging but critical for magnetically switchable molecules. Here, we prepared two cyanide-bridged [Fe4 Co4 ] cube complexes via the alkynyl- and alcohol-functionalized trispyrazoyl capping ligands. The alkynyl-functionalized complex 1 exhibited a thermally-induced incomplete metal-to-metal electron transfer (MMET) behaviour at around 220 K, while the mixed alkynyl/alcohol-functionalized cube of 2 showed a complete and abrupt MMET behaviour at 232 K. Remarkably, both compounds showed a long-lived photo-induced metastable state up to 200 K. The crystallographic study demonstrated that the incomplete transition of 1 was likely due to the possible elastic frustration originating from the competition between the anion-propagated elastic interactions and inter-cluster alkynyl-alkynyl & CH-alkynyl interactions, whereas the latter are eliminated in 2 as a result of the partial substitution by the alcohol-functionalized ligand. Additionally, the introduction of chemically distinguishable cobalt centers within the cube unit of 2 did not lead to a two-step but a one-step transition, possibly because of the strong ferroelastic intramolecular interaction through the cyanide bridges.

5.
Angew Chem Int Ed Engl ; 62(25): e202303476, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37079447

RESUMO

NIR-II-emitting photosensitizers (PSs) have attracted great research interest due to their promising clinical applications in imaging-guided photodynamic therapy (PDT). However, it is still challenging to realize highly efficient PDT on NIR-II PSs. In this work, we develop a chlorination-mediated π-π organizing strategy to improve the PDT of a PS with conjugation-extended A-D-A architecture. The significant dipole moment of the carbon-chlorine bond and the strong intermolecular interactions of chlorine atoms bring on compact π-π stacking in the chlorine-substituted PS, which facilitates energy/charge transfer and promotes the photochemical reactions of PDT. Consequently, the resultant NIR-II emitting PS exhibits a leading PDT performance with a yield of reactive oxygen species higher than that of previously reported long-wavelength PSs. These findings will enlighten the future design of NIR-II emitting PSs with enhanced PDT efficiency.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Halogenação , Cloro , Espécies Reativas de Oxigênio
6.
Inorg Chem ; 61(2): 931-938, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34962120

RESUMO

The introduction of Keggin-type POMs of [PMo12O40]3- or [SiW12O40]4- as counteranions into the FeIII-MII cyanometalate system afforded three chain complexes: [(Tp*)Fe(CN)3Ni(DMF)4]2{[(Tp*)Fe(CN)3Ni(DMF)3(H2O)]2Ni(DMF)4}[PMo12O40]2·14DMF (1, Tp*= hydridotris(3,5-dimethylpyrazol-1-yl)borate) and {[(Tp*)Fe(CN)3M(DMF)3(H2O)]2M(DMF)4}[SiW12O40]·3DMF (2, M = NiII; 3, M = CoII). Complex 1 contains both discrete cationic [Fe2Ni2]2+ squares and less-studied {Fe2Ni3}n pearl chains, namely 3,2-chains, while 2 and 3 consist of pure 3,2-chains due to the replacement of [PMo12O40]3- with [SiW12O40]4- bearing one more negative charge. Magnetic studies revealed that all of the complexes exhibit single-chain-magnet (SCM) behaviors with the effective thermal barriers of Δτ1/kB = 61.6 K (infinite regime) and Δτ2/kB = 36.5 K (finite regime) for 1, Δτ/kB = 46.9 K for 2 (finite), and Δτ/kB = 30.6 K for 3 (finite). The POM moieties may play a pivotal role for the realization of this promising archetype of favoring SCM property: (1) the highly negatively charged POMs may facilitate the formation of the uncommon highly positive "pearl chain"; (2) the nanosized POMs necessarily led to the good isolation of the chains in the title complexes, and (3) the employment of POMs with different charges may regulate the resultant complexes in both structure and magnetism.

7.
Inorg Chem ; 61(39): 15392-15397, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36134570

RESUMO

Mononuclear complexes within a particular coordination geometry have been well recognized for high-performance single-molecule magnets (SMMs), while the incorporation of such well-defined geometric ions into multinuclear complexes remains less explored. Using the rigid 2-(di(1H-pyrazol-1-yl)methyl)-6-(1H-pyrazol-1-yl)pyridine (PyPz3) ligand, here, we prepared a series of benzoquinone-bridged dicobalt(II) SMMs [{(PyPz3)Co}2(L)][PF6]2, (1, L = 2,5-dioxo-1,4-benzoquinone (dhbq2-); 2, L = chloranilate (CA2-); and 3, L = bromanilate (BA2-)), in which each Co(II) center adopts a distorted trigonal prismatic (TPR) geometry and the distortion increases with the sizes of 3,6-substituent groups (H (1) < Cl (2) < Br (3)). Accordingly, the magnetic study revealed that the axial anisotropy parameter (D) of the Co ions decreased from -78.5 to -56.5 cm-1 in 1-3, while the rhombic one (E) increased significantly. As a result, 1 exhibited slow relaxation of magnetization under a zero dc field, while both 2 and 3 showed only the field-induced SMM behaviors, likely due to the increased rhombic anisotropy that leads to the serious quantum tunneling of the magnetization. Our study demonstrated that the relaxation dynamics and performances of a multinuclear complex are strongly dependent on the coordination geometry of the local metal ions, which may be engineered by modifying the substituent groups.

8.
Inorg Chem ; 61(15): 5855-5860, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35377631

RESUMO

The incorporation of two different cyanide building blocks of [(TpR)FeIII(CN)3]- and [AuI(CN)2]- into one molecule afforded a novel hexanuclear [FeIII2FeII2AuI2] complex (1·2Et2O), in which the cyanide-bridged [FeIII2FeII2] square was further grafted by two [AuI(CN)2]- fragments as long arms in syn orientations. Complex 1·2Et2O undergoes a gradual spin crossover (SCO) ffrom low-spin (LS) to high-spin (HS) state for the Fe(II) centers upon desolvation. Remarkably, its desolvated phase (1) exhibits a reversible but atypical two-step (sharp-gradual) SCO behavior with considerable hysteresis (21 K). Variable-temperature single-crystal X-ray structural studies reveal that the hysteretic spin transition takes place synchronously with the concerted displacive motions of the molecules, representing another rare example including multistep and hysteretic spin transitions due to the synergetic SCO and structural phase transition.

9.
J Am Chem Soc ; 143(27): 10120-10130, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34105955

RESUMO

Semiconducting single-walled carbon nanotubes (s-SWCNTs) with a diameter of around 1.0-1.5 nm, which present bandgaps comparable to silicon, are highly desired for electronic applications. Therefore, the preparation of s-SWCNTs of such diameters has been attracting great attention. The inner surface of SWCNTs has a suitable curvature and large contacting area, which is attractive in host-guest chemistry triggered by electron transfer. Here we reported a strategy of host-guest molecular interaction between SWCNTs and inner clusters with designed size, thus selectively separating s-SWCNTs of expected diameters. When polyoxometalate clusters of ∼1 nm in size were filled in the inner cavities of SWCNTs, s-SWCNTs with diameters concentrated at ∼1.3-1.4 nm were selectively extracted with the purity of ∼98% by a commercially available polyfluorene derivative. The field-effect transistors built from the sorted s-SWCNTs showed a typical behavior of semiconductors. The sorting mechanisms associated with size-dependent electron transfer from nanotubes to inner polyoxometalate were revealed by the spectroscopic and in situ electron microscopic evidence as well as the theoretical calculation. The polyoxometalates with designable size and redox property enable the flexible regulation of interaction between the nanotubes and the clusters, thus tuning the diameter of sorted s-SWCNTs. The present sorting strategy is simple and should be generally feasible in other SWCNT sorting techniques, bringing both great easiness in dispersant design and improved selectivity.

10.
Inorg Chem ; 60(18): 14330-14335, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34491733

RESUMO

A family of molecular capsules, {[(Tp*)Fe(CN)3Co(bpyC═N(CH2)7N═Cbpy)]2[X]2}·sol (1, X = ClO4, sol = 6DMF; 2, X = PF6, sol = 6DMF; 3, X = OTf, sol = 6DMF; 4, X = BPh4, sol = 2DMF; Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate; bpy = 2,2'-bipyridine), were prepared via the Schiff-base condensation of the aldehyde-substituted bpy (bpyCHO) and 1,7-diaminoheptane (H2N(CH2)7NH2). All the complexes contain the same cyanide-bridged cationic square cores ([Fe2Co2]2+), which are encapsuled by the flexible alkyl chains. Variable-temperature single-crystal X-ray diffraction, FT-IR spectra, and magnetic studies reveal the abrupt and complete, thermo- and photo-induced electron-transfer-coupled spin transition for 1-3, while the pure high-spin phase for 4. Such distinct behavior is attributed to the effective long-range cooperative interactions mediated by the intercluster π-π couplings in 1-3, which, however, are significantly blocked in 4 due to the steric effect of interstitial BPh4- anions. Furthermore, the shift in the thermally induced transition temperatures of 254 K for 1, 233 K for 2, and 187 K for 3, respectively, is likely correlated to the variable H···O and H···F interactions between the solvent molecules, anions, and the bipyridine ligands of the [Fe2Co2] squares, suggesting the significant anion-dependent effect in such a system.

11.
Inorg Chem ; 60(24): 18698-18705, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34823356

RESUMO

The recent years have witnessed the glory development for the construction of high-performance mononuclear single molecule magnets (SMMs) within a specific coordination geometry, which, however, is not well applied in cluster-based SMMs due to the synthetic challenges. Given that the monocobalt(II) complexes within a trigonal-prismatic (TPR) coordination geometry have been classified as excellent SMMs with huge axial anisotropy (D ≈ -100 cm-1), here we designed and synthesized a new dual-capping tetrazine ligand, 3,6-bis(6-(di(1H-pyrazol-1-yl)methyl)pyridin-2-yl)-1,2,4,5-tetrazine (bpptz), and prepared a novel dicobalt(II) complex, [Cp2CoIII][{(hfac)CoII}2(bpptz•-)][hfac]2·2Et2O (1, hfac = hexafluoroacetylacetonate). In the structure of 1, the bpptz•- radical ligand enwraps two Co(II) centers within quasi-TPR geometries, which are further bridged by the tetrazine radical in the trans mode. The magnetic study revealed that the interaction between the Co centers and the tetrazine radical is strongly antiferromagnetic with a coupling constant (J) of -65.8 cm-1 (in the -2J formalism). Remarkably, 1 exhibited the typical SMM behavior with an effective energy barrier of 69 cm-1 under a 1.5 kOe dc field, among the largest for polynuclear transition metal SMMs. In addition, DFT and ab initio calculations suggested that the presence of a strong Co(II)-radical magnetic interaction effectively quenches the QTM effect and enhances the barrier height for the magnetization reversal.

12.
Inorg Chem ; 60(6): 3651-3656, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33656338

RESUMO

Introducing both tetrazine radical and azido bridges afforded two air-stable square complexes [MII4(bpztz•-)4(N3)4] (MII = Zn2+, 1; Co2+, 2; bpztz = 3,6-bis(3,5-dimethylpyrazolyl)-1,2,4,5-tetrazine), where the metal ions are cobridged by µ1,1-azido bridges and tetrazine radicals. Magnetic studies revealed strong antiferromagnetic metal-radical interaction with a coupling constant of -64.7 cm-1 in the 2J formalism in 2. Remarkably, 2 exhibits slow relaxation of magnetization with an effective barrier for spin reverse of 96 K at zero applied field.

13.
Cell Mol Life Sci ; 77(4): 719-733, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31302752

RESUMO

Cytidine base editors (CBEs) have been demonstrated to be useful for precisely inducing C:G-to-T:A base mutations in various organisms. In this study, we showed that the BE4-Gam system induced the targeted C-to-T base conversion in porcine blastocysts at an efficiency of 66.7-71.4% via the injection of a single sgRNA targeting a xeno-antigen-related gene and BE4-Gam mRNA. Furthermore, the efficiency of simultaneous three gene base conversion via the injection of three targeting sgRNAs and BE4-Gam mRNA into porcine parthenogenetic embryos was 18.1%. We also obtained beta-1,4-N-acetyl-galactosaminyl transferase 2, alpha-1,3-galactosyltransferase, and cytidine monophosphate-N-acetylneuraminic acid hydroxylase deficient pig by somatic cell nuclear transfer, which exhibited significantly decreased activity. In addition, a new CBE version (termed AncBE4max) was used to edit genes in blastocysts and porcine fibroblasts (PFFs) for the first time. While this new version demonstrated a three genes base-editing rate of 71.4% at the porcine GGTA1, B4galNT2, and CMAH loci, it increased the frequency of bystander edits, which ranged from 17.8 to 71.4%. In this study, we efficiently and precisely mutated bases in porcine blastocysts and PFFs using CBEs and successfully generated C-to-T and C-to-G mutations in pigs. These results suggest that CBEs provide a more simple and efficient method for improving economic traits, reducing the breeding cycle, and increasing disease tolerance in pigs, thus aiding in the development of human disease models.


Assuntos
Citidina/genética , Edição de Genes/métodos , Suínos/genética , Animais , Blastocisto/metabolismo , Sistemas CRISPR-Cas , Galactosiltransferases/genética , Vetores Genéticos/genética , Oxigenases de Função Mista/genética , Mutagênese , N-Acetilgalactosaminiltransferases/genética , RNA Guia de Cinetoplastídeos/genética , Suínos/embriologia
14.
Angew Chem Int Ed Engl ; 60(6): 3238-3246, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33095512

RESUMO

To elevate the performance of polymer solar cells (PSC) processed by non-halogenated solvents, a dissymmetric fused-ring acceptor BTIC-2Cl-γCF3 with chlorine and trifluoromethyl end groups has been designed and synthesized. X-ray crystallographic data suggests that BTIC-2Cl-γCF3 has a 3D network packing structure as a result of H- and J-aggregations between adjacent molecules, which will strengthen its charge transport as an acceptor material. When PBDB-TF was used as a donor, the toluene-processed binary device realized a high power conversion efficiency (PCE) of 16.31 %, which improved to 17.12 % when PC71ThBM was added as the third component. Its efficiency of over 17 % is currently the highest among polymer solar cells processed by non-halogenated solvents. Compared to its symmetric counterparts BTIC-4Cl and BTIC-CF3 -γ, the dissymmetric BTIC-2Cl-γCF3 integrates their merits, and has optimized the molecular aggregations with excellent storage and photo-stability, and also extending the maximum absorption peak in film to 852 nm. The devices exhibit good transparency indicating a potential utilization in semi-transparent building integrated photovoltaics (ST-BIPV).

15.
Inorg Chem ; 59(15): 10389-10394, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32700532

RESUMO

Taking advantage of a rigid tetradentate ligand of bis(pyrazoly)(3-pyrazolypyridinyl)methane (PyPz3) and the [CuII(opba)]2- unit [opba4- = o-phenylenebis(oxamato)], the trinuclear complex [{CoII(PyPz3)}2CuII(opba)][ClO4]2·5MeCN·MeOH (1) was constructed, in which the CoII centers adopt a trigonal-prismatic geometry, while considerable intramolecular magnetic coupling was successfully introduced through the oxamido bridges, representing another very first example of single-molecule magnets marrying both selected coordination geometry and magnetic exchanges.

16.
Inorg Chem ; 59(12): 8505-8513, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32491841

RESUMO

Two mononuclear trigonal prismatic Co(II) complexes [Co(tppm*)][BPh4]2 (1) and [Co(hpy)][BPh4]2·3CH2Cl2 (2) (tppm* = 6,6',6″-(methoxymethanetriyl)tris(2-(1H-pyrazol-1-yl)pyridine; hpy = tris(2,2'-bipyrid-6-yl)methanol) were synthesized by incorporating the Co(II) ions in two pocketing tripodal hexadentate ligands. Magnetic studies indicate similar uniaxial magnetic anisotropy while having distinct dynamic magnetic properties for two complexes, of which 1 exhibits clear hysteresis loops and Orbach process governed magnetic relaxation with an effective energy barrier (Ueff) of 192 cm-1, among the best examples in transition metallic SIMs, about 10 times larger than that of 2 (Ueff = 20 cm-1, extracted by fitting the data to an Orbach relaxation process but there is no real state at this energy). Such pronounced difference is ascribed to the dominant Raman process and quantum tunneling of magnetization (QTM) in 2 owing to the structural distortion and symmetry breaking, indicated by a nearly perfect trigonal prismatic geometry (D3 local symmetry) for 1 and a more distorted configuration for 2 (C3 local symmetry). Ab initio calculations predict strong axial anisotropy for 1 with minimal QTM probability, with the transverse component of anisotropy being estimated to be much higher for 2 than 1, leading to a 10-fold lower Ueff value than 1.

17.
Inorg Chem ; 59(12): 8025-8033, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32464054

RESUMO

Treatment of CoCl2·6H2O and tris(pyrazolyl-1-yl)borate tricyanoiron(III) anions at 55 °C afforded a series of new Fe-Co polynuclear clusters: {Co2Cl2(DMF)4[(Tp4-Me)Fe(CN)3]2} (1; Tp4-Me = hydridotris(4-methylpyrazol-1-yl)borate), (H3O+)@{Co4Cl4[(Tp4-Me)Fe(CN)3]4} (2), (MePh3P)4{Co6Cl6[(Tp4-Me)Fe(CN)3]6}·15CH3CN·3CH3OH·2H2O (3), and (BnEt3N)4{Co5Cl8[(Tp*)Fe(CN)3]4}·4CH3CN·2H2O (4; Tp*= hydridotris(3,5-dimethylpyrazol-1-yl)borate). They feature an asymmetric [Fe2Co2(CN)4] square, a pseudocubic [Fe4Co4(CN)12] cluster, a distorted-hexagonal-prism-shaped [Fe6Co6(CN)18] cage, and a bis(trigonal-bipyramidal) cluster of [Fe4Co5(CN)12] fused at one cobalt center, respectively. The Co(II) ions adopt a four-coordinate tetrahedral geometry except for half of 1 in an octahedral geometry. It should be mentioned that 3 and 4 provide two novel molecular skeletons in the cyanometalate family. Interestingly, 1 behaved as a single-molecule magnet with an effective energy barrier for spin reverse of 30.7 K at zero dc field. Our result demonstrated a possible self-assembly route toward high-nuclearity cyanide-bridged clusters by introducing four-coordinate cobalt(II) ions.

18.
Inorg Chem ; 59(22): 16215-16224, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33105988

RESUMO

The successful introduction of azide ions as secondary bridges into the FeIII-NiII cyanide system afforded two clusters and one unique 4(3),2-ribbon chain: [(bpzpy)2Ni2(µ2-1,1-N3)2{(pzTp)Fe(CN)3}2]·3H2O [1; bpzpy = 2,6-bis(pyrazol-1-yl)pyridine, and pzTp = tetrakis(pyrazolyl)borate], [(L1)2Ni4(µ3-1,1,1-OCH3)2(µ2-1,1-N3)2(H2O)2{(Tp)Fe(CN)3}2]·2CH3OH·H2O [2; Tp = hydrotris(pyrazolyl)borate, and HL1 = 2,6-bis{(2-hydroxypropylimino)methyl}-4-methylphenol], and [(L2)2Ni3(µ2-1,1-N3)4{(pzTp)Fe(CN)3}2]n (3; L2 = 2-{[phenyl(pyridin-2-yl)methylene]amino}ethan-1-amine). Both 1 and 2 feature the centrosymmetric {FeIII-NiII2-FeIII} and {FeIII-NiII4-FeIII} rodlike structures in which the two peripheral [(TpR)Fe(CN)3]- anions act as monodentate ligands via one cyanide group to link the central azide-bridged [Ni2] and [Ni4] subunit, respectively, while 3 displays an extended structure of the double-zigzag (4,2-ribbon) chain in which the double end-on azide-bridged trinuclear [Ni3] subunits serve as the 4-connected nodes. Magnetic study revealed that intramolecular ferromagnetic coupling is dominated by the azide or cyanide bridges in all of the complexes. Remarkably, complex 1 behaves as a single-molecule magnet with an effective energy barrier of 16.5 cm-1 at zero dc field, while complex 3 exhibits metamagnetism with a hidden spin canting property below 12 K.

19.
Inorg Chem ; 59(11): 7622-7630, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32391690

RESUMO

Three mononuclear octahedral Co(II) complexes are reported, [Co(py)4(SCN)2] (1), [Co(py)4(Cl)2]·H2O (2), and [Co(py)4(Br)2] (3), that exhibit different distortions with compression (1) or elongation (2 and 3) of the axial positions. Easy plane magnetic anisotropy was confirmed by magnetic, HF-EPR, and computational studies for all complexes. Further analyses indicate that both the sign and magnitude of zero-field splitting parameters experience a significant change (D ≥ ±150 cm-1) by tuning of the axial and equatorial ligand field strength. Slow magnetic relaxation is observed for all compounds which is dominated by the Raman process involving both acoustic and optical phonons.

20.
Ecotoxicol Environ Saf ; 193: 110344, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32092583

RESUMO

To identify seasonal fluxes and sources of dissolved inorganic nitrogen (DIN) wet deposition, concentrations and δ15N signatures of nitrate (NO3-) and ammonium (NH4+) in wet precipitation were measured at four typical land-use types in the Three Gorges reservoir (TGR) area of southwest China for a one-year period. Higher DIN fluxes were recorded in spring and summer and their total fluxes (averaged 7.58 kg N ha-1) were similar to the critical loads in aquatic ecosystems. Significant differences of precipitation δ15N were observed for NH4+-N between town and wetland sites in spring and between urban and rural sites in summer. For NO3--N, significant differences of precipitation δ15N were observed between town and rural sites in spring and between urban and town sites in autumn, respectively. Quantitative results of NO3--N sources showed that both biomass burning and coal combustion had higher fluxes at the urban site especially in winter (0.18 ± 0.09 and 0.19 ± 0.08 kg N ha-1), which were about three times higher than those at the town site. A similar finding was observed for soil emission and vehicle exhausts in winter. On the whole, DIN wet deposition averaged at 12.13 kg N ha-1 yr-1 with the urban site as the hotspot (17.50 kg N ha-1 yr-1) and regional NO3--N fluxes had a seasonal pattern with minimum values in winter. The contribution to NO3--N wet deposition from biomass burning was 26.1 ± 14.1%, which is the second dominant factor lower than coal combustion (26.5 ± 12.6%) in the TGR area during spring and summer. Hence N emission reduction from biomass burning, coal combustion and vehicle exhausts should be strengthened especially in spring and summer to effectively manage DIN pollution for the sustainable development in TGR area.


Assuntos
Poluentes Ambientais/análise , Nitrogênio/análise , Compostos de Amônio/análise , Biomassa , China , Carvão Mineral , Ecossistema , Meio Ambiente , Monitoramento Ambiental , Nitratos/análise , Chuva , Estações do Ano , Solo , Emissões de Veículos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA