Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Environ Sci Technol ; 58(11): 5068-5078, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38446141

RESUMO

Sulfate aerosol is one of the major components of secondary fine particulate matter in urban haze that has crucial impacts on the social economy and public health. Among the atmospheric sulfate sources, Mn(II)-catalyzed SO2 oxidation on aerosol surfaces has been regarded as a dominating one. In this work, we measured the reaction kinetics of Mn(II)-catalyzed SO2 oxidation in single droplets using an aerosol optical tweezer. We show that the SO2 oxidation occurs at the Mn(II)-active sites on the aerosol surface, per a piecewise kinetic formulation, one that is characterized by a threshold surface Mn(II) concentration and gaseous SO2 concentration. When the surface Mn(II) concentration is lower than the threshold value, the reaction rate is first order with respect to both Mn(II) and SO2, agreeing with our traditional knowledge. But when surface Mn(II) concentration is above the threshold, the reaction rate becomes independent of Mn(II) concentration, and the reaction order with respect to SO2 becomes greater than unity. The measured reaction rate can serve as a tool to estimate sulfate formation based on field observation, and our established parametrization corrects these calculations. This framework for reaction kinetics and parametrization holds promising potential for generalization to various heterogeneous reaction pathways.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Óxidos de Enxofre , Sulfatos/análise , Aerossóis , Catálise
2.
Environ Sci Technol ; 57(48): 20074-20084, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37974434

RESUMO

Efflorescence of ammonium nitrate (AN) aerosols significantly impacts atmospheric secondary aerosol formation, climate, and human health. We investigated the effect of representative water-soluble organic compounds (WSOCs) (sucralose (SUC), glycerol (GLY), and citric acid (CA) on AN:WSOC aerosol efflorescence using vacuum Fourier transform infrared spectroscopy. Combining efflorescence relative humidity (ERH) measurements, heterogeneous nucleation rates, and model predictions, we found that aerosol viscosity, correlating with molecular diffusion, effectively predicted ERH variations among the AN:WSOC aerosols. WSOCs with higher viscosity (SUC and CA) hindered efflorescence, while GLY with a lower viscosity showed a minor effect. At a low AN:CA molar ratio (10:1), CA promoted ERH, likely due to CA crystallization. Increasing the droplet pH inhibited AN:CA aerosol efflorescence. In contrast, for AN:SUC and AN:GLY aerosols, efflorescence is pH-insensitive. With the addition of trivial sulfate, AN:SUC droplets exhibited two-stage efflorescence, coinciding with ammonium sulfate and AN efflorescence. Given the atmospheric abundance, the morphology, phase, and mixing state of nitrate aerosols are significant for atmospheric chemistry and physics. Our results suggest that AN:WSOCs aerosols can exist in the amorphous phase in the atmosphere, with efflorescence behavior depending on the aerosol composition, viscosity, pH, and the cation and anion interactions in a complex manner.


Assuntos
Nitratos , Água , Humanos , Nitratos/química , Água/química , Umidade , Sulfato de Amônio/química , Aerossóis , Concentração de Íons de Hidrogênio
3.
J Environ Sci (China) ; 127: 320-327, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522064

RESUMO

The high NO3- concentration in fine particulate matters (PM2.5) during heavy haze events has attracted much attention, but the formation mechanism of nitrates remains largely uncertain, especially concerning heterogeneous uptake of NOX by aqueous phase. In this work, the heterogeneous uptake of NO2 by sodium acetate (NaAc) droplets with different NO2 concentrations and relative humidity (RH) conditions is investigated by microscopic Fourier transform infrared spectrometer (micro-FTIR). The IR feature changes of aqueous droplets indicate the acetate depletion and nitrite formation in humid environment. This implies that acetate droplets can provide the alkaline aqueous circumstances caused by acetate hydrolysis and acetic acid (HAc) volatilization for nitrite formation during the NO2 heterogeneous uptake. Meanwhile, the nitrite formation will exhibit a pH neutralizing effect on acetate hydrolysis, further facilitating HAc volatilization and acetate depletion. The heterogeneous uptake coefficient increases from 5.2 × 10-6 to 1.27 × 10-5 as RH decreases from 90% to 60% due to the enhanced HAc volatilization. Furthermore, no obvious change in uptake coefficient with different NO2 concentrations is observed. This work may provide a new pathway for atmospheric nitrogen cycling and secondary nitrite aerosol formation.


Assuntos
Nitritos , Dióxido de Nitrogênio , Acetato de Sódio , Aerossóis/análise , Material Particulado , Água
4.
Anal Chem ; 94(43): 15132-15138, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36251492

RESUMO

Acidity is a defining property of atmospheric aerosols that profoundly affects environmental systems, human health, and climate. However, directly measuring the pH of aerosol microdroplets remains a challenge, especially when the microdroplets' composition is nonhomogeneous or dynamically evolving or both. As a result, a pH measurement technique with high spatiotemporal resolution is needed. Here, we report a spatiotemporally resolved pH measurement technique in microdroplets using spontaneous Raman spectroscopy. Our target sample was the microdroplets comprising sodium chloride and oxalic acid─laboratory surrogates of sea spray aerosols and water-soluble organic compounds, respectively. Our measurements show that the chloride depletion from the microdroplets caused a continuous increase in pH by ∼0.5 units in 2 hours. Meanwhile, the surface propensity of chloride anions triggers a stable pH gradient inside a single droplet, with the pH at the droplet surface lower than that at the core by ∼ 0.4 units. The uncertainties arising from the Raman detection limit (±0.08 pH units) and from the nonideal solution conditions (-0.06 pH units) are constrained. Our findings indicate that spontaneous Raman spectroscopy is a simple yet robust technique for precise pH measurement in aerosols with high spatiotemporal resolution.


Assuntos
Cloretos , Análise Espectral Raman , Humanos , Aerossóis/química , Análise Espectral Raman/métodos , Água/química , Halogênios , Concentração de Íons de Hidrogênio
5.
Acc Chem Res ; 54(19): 3667-3678, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34569236

RESUMO

Aerosols are ubiquitous in the atmosphere and profoundly affect climate systems and human health. To gain more insights on their broad impacts, we need to comprehensively understand the fundamental properties of atmospheric aerosols. Since aerosols are multiphase, a dispersion of condensed matter (solid particles or liquid droplets, hereafter particles) in gas, partitioning of volatile matter between the condensed and the gas phases is one defining characteristic of aerosols. For example, water content partitioning under different relative humidity conditions, known as aerosol hygroscopicity, has been extensively investigated in the past decades. Meanwhile, partitioning of volatile organic or inorganic components, which is referred to as aerosol volatility, remains understudied. Commonly, a bulk solution system is treated as a single phase, with volatility mainly determined by the nature of its components, and the composition partitioning between solution and gas phase is limited. Aerosols, however, comprise an extensive gas phase, and their volatility can also be induced by component reactions. These reactions occurring within aerosols are driven by the formation of volatile products and their continuous partitioning into the gas phase. As a consequence, the overall aerosol systems exhibit prominent volatility. Noteworthily, such volatility induced by reactions is a phenomenon exclusively observed in the multiphase aerosol systems, and it is trivial in bulk solutions due to the limited extent of liquid-gas partitioning. Take the chloride depletion in sea salt particles as an example. Recent findings have revealed that chloride depletion can be caused by reactions between NaCl and weak organic acids, which release HCl into the gas phase. Such a reaction can be described as a strong acid displaced by a weak acid, which is hardly observed in bulk phase. Generally, this unique partitioning behavior of aerosol systems and its potential to alter aerosol composition, size, reactivity, and other physicochemical properties merits more attention by atmospheric community.This Account focuses on the recent advancements in the research of component reactions that induce aerosol volatility. These reactions can be categorized into four types: chloride depletion, nitrate depletion, ammonium depletion, and salt hydrolysis. The depletion of chloride or nitrate can be regarded as a displacement reaction, in which a strong acid is displaced by a weak acid. Such a reaction releases highly volatile HCl or HNO3 into the gas phase and leads to a loss of chloride or nitrate within the particles. Likewise, ammonium depletion is a displacement reaction in which a strong base is displaced by a weak base, resulting in release of ammonia and substantial changes in aerosol hygroscopicity. In addition, aerosol volatility can also be induced by salt hydrolysis in a specific case, which is sustained by the coexistence of proton acceptor and hydroxide ion acceptor within particles. Furthermore, we quantitatively discuss these displacement reactions from both thermodynamic and kinetic perspectives, by using the extended aerosol inorganic model (E-AIM) and Maxwell steady-state diffusive mass transfer equation, respectively. Given the ubiquity of component partitioning in aerosol systems, our discussion may provide a new perspective on the underlying mechanisms of aerosol aging and relevant climate effects.

6.
Environ Sci Technol ; 56(10): 6274-6281, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35476405

RESUMO

Accurately measuring the pH of atmospheric aerosols is a prerequisite for understanding the multiphase chemistry that profoundly affects the environment and climate systems. Despite the advancements of experimental techniques for in situ pH measurements in aerosols, current studies are limited to measuring the static pH of aerosol microdroplets with an unperturbed composition. This steady-state scenario, however, deviates from the real-world aerosols undergoing atmospheric aging reactions, specifically, those characterized with a spontaneous displacement of strong bases (or acids) with high volatility. Here, we introduce a continuous and in situ measurement of aerosol pH by using a 4-mercaptopyridine-functionalized silver nanoparticle probe and surface-enhanced Raman spectroscopy. We find that the ammonium depletion─a spontaneous displacement of ammonium by dicarboxylic acid salts─continuously acidifies aerosol water over time. The decaying trends of pH in the aerosols under various humidity conditions can be unified with a universal exponential function. Such an exponentially decaying function further indicates that the ammonium depletion reaction is a self-limiting process. Our technique can be applied to study the dynamic change of aerosol acidity during the complex atmospheric aging processes, toward elucidating their implications on atmospheric chloride, nitrate, and ammonium cycles.

7.
Environ Sci Technol ; 56(18): 12937-12944, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36049086

RESUMO

Depletion of chloride, nitrate, or ammonium from atmospheric aerosols represents a unique class of displacement reactions in which strong acids (HCl and HNO3) or bases (NH3) are substituted by weaker ones (i.e., dicarboxylic acids or dicarboxylate salts, respectively). These reactions alter the aerosol composition and perturb the atmospheric cycle of volatile compounds, thereby affecting environmental systems and climate. Despite the profound implications, the mechanism of these unique displacement reactions remains unclear. Here, we elucidate the thermodynamics and kinetics of these reactions using the multiphase buffer theory and a diffusion-controlled mass-transfer function, respectively. On the thermodynamic aspect, we find that the effective dissociation constants of the strong acids and bases in aerosols are 2 to 10 orders of magnitude lower than those in bulk solutions. On the kinetic aspect, we find that displacement reactions occur rapidly in aerosol microdroplets with a radius below 10 µm. Within this size range, the characteristic reaction time is always shorter than the lifetime of the aerosols in the atmosphere. Our findings suggest that the unique displacement reactions can significantly modify the composition of atmospheric aerosols, and consequentially, these aerosols may manifest distinct properties unforeseen by the chemistry of homogeneous bulk systems.


Assuntos
Compostos de Amônio , Nitratos , Aerossóis/química , Atmosfera/química , Cloretos , Ácidos Dicarboxílicos/química , Cinética , Nitratos/química , Sais , Termodinâmica
8.
Environ Sci Technol ; 56(12): 7637-7646, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35638231

RESUMO

Severe winter haze events in Beijing and North China Plain are characterized by rapid production of sulfate aerosols with unresolved mechanisms. Oxidation of SO2 by O2 in the absence of metal catalysts (uncatalyzed autoxidation) represents the most ubiquitous SO2 conversion pathway in the atmosphere. However, this reaction has long been regarded as too slow to be atmospherically meaningful. This traditional view was based on the kinetic studies conducted in bulk dilute solutions that mimic cloudwater but deviate from urban aerosols. Here, we directly measure the sulfate formation rate via uncatalyzed SO2 autoxidation in single (NH4)2SO4 microdroplets, by using an aerosol optical tweezer coupled with a cavity-enhanced Raman spectroscopy technique. We find that the aqueous reaction of uncatalyzed SO2 autoxidation is accelerated by two orders of magnitude at the high ionic strength (∼36 molal) conditions in the supersaturated aerosol water. Furthermore, at acidic conditions (pH 3.5-4.5), uncatalyzed autoxidation predominately occurs on droplet surface, with a reaction rate unconstrained by SO2 solubility. With these rate enhancements, we estimate that the uncatalyzed SO2 autoxidation in aerosols can produce sulfate at a rate up to 0.20 µg m-3 hr-1, under the winter air pollution condition in Beijing.


Assuntos
Poluentes Atmosféricos , Dióxido de Enxofre , Aerossóis/química , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Cinética , Material Particulado/análise , Sulfatos/química , Dióxido de Enxofre/análise , Óxidos de Enxofre , Água
9.
J Phys Chem A ; 125(7): 1589-1597, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33576639

RESUMO

The Hofmeister effect of inorganic ions to precipitate proteins has been used to understand the coagulation phenomenon in colloid and protein science. Herein, for the first time, this effect is studied on the hygroscopicity of aerosols using ATR-FTIR spectroscopy. The representative Hofmeister salts (MgSO4, KCl, NH4NO3) and amino acid (glycine) with different amino acid/salt molar ratios (ASRs) are mixed and atomized into micrometer-sized particles. For mixed kosmotrope (MgSO4)/glycine and chaotrope (NH4NO3)/glycine with an ASR of 1:1, both ERHs (efflorescence relative humidities) and DRHs (deliquescence relative humidities) are absent. However, for the mixtures of glycine and neutral salt (KCl), no DRH is observed while 66.2 and 61.4% ERH of glycine is detected for mixtures with ASRs of 1:1 and 1:3, respectively, which is similar to pure glycine. For the mixture of NH4NO3/glycine with an ASR of 1:3, ERH and DRH are found to be 15.4 and 32.2% RH, less than that of pure NH4NO3. Further, interactions between glycine-salt and/or water is also studied in the mixtures during hydration and dehydration. Water-mediated ion-glycine interaction is detected based on the two glycine bands merging into one band. Glycine-SO42- interaction is present for glycine/sulfate in all ASRs, while glycine-NO3- interaction is only seen for 1:3 glycine/NH4NO3 mixtures during hydration. This work opens a window to understand the Hofmeister effect on the hygroscopicity of atmospheric aerosols.

10.
Bioorg Chem ; 102: 104087, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32683183

RESUMO

Two new (1-2) as well as five known (3-7) compounds were isolated from Polytrichum commune, a folk herbal medicine in China, and three of them (2, 4, 5) belong to benzonaphthoxanthenones that are rarely found in nature. Their structures were elucidated by the approach to 1D and 2D NMR spectra. The absolute configuration of 2 was assigned by comparing its experimental and calculated ECD data. 1-5 were investigated for their anti-neuroinflammatory activity against LPS-induced BV-2 cells. 1 and 3 exhibited well protective effect at a concentration of 2.5 µmol/mL. Molecular docking studies were adopted to further investigate the possible mechanism, whose results suggested that 1 might exert anti-neuroinflammatory effect by inhibiting activity of p38α, JNK2 and TAK1 to reduce the liberation of pro-inflammatory cytokines.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Xantenos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/análise , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Medicina Tradicional Chinesa , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Xantenos/química , Xantenos/isolamento & purificação
11.
Bioorg Chem ; 95: 103489, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31862456

RESUMO

Five new isoquinolines (1-5) were isolated from national herb Corydalis tomentella. Their structures were elucidated by extensive analysis of the 1D and 2D NMR spectra and from the HRESIMS. Absolute configurations of 1-3 were determined by comparing their experimental and computed ECD data. Since plants from Corydalis have been reported to protect against Alzheimer's disease, all compounds were evaluated for their neuroprotective effect against lipopolysaccharide-induced BV2 microglia cells. Compound 2 and 3 showed well anti-neuroinflammatory activity at low concentration (25 µM).


Assuntos
Doença de Alzheimer/tratamento farmacológico , Corydalis/química , Isoquinolinas/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Isoquinolinas/química , Isoquinolinas/isolamento & purificação , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Relação Estrutura-Atividade
12.
J Cell Mol Med ; 22(2): 1329-1336, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29247983

RESUMO

Myostatin is mainly secreted by skeletal muscle and negatively regulates skeletal muscle growth. However, the roles of myostatin on bone metabolism are still largely unknown. Here, we recruited two large populations containing 6308 elderly Chinese and conducted comprehensive statistical analyses to evaluate the associations among lean body mass (LBM), plasma myostatin, and bone mineral density (BMD). Our data revealed that total myostatin in plasma was mainly determined by LBM. The relative abundance of mature myostatin (mature/total) was significantly lower in high versus low BMD subjects. Moreover, the relative abundance of mature myostatin was positively correlated with bone resorption marker. Finally, we carried out in vitro experiments and found that myostatin has inhibitory effects on the proliferation and differentiation of human osteoprogenitor cells. Taken together, our results have demonstrated that the relative abundance of mature myostatin in plasma is negatively associated with BMD, and the underlying functional mechanism for the association is most likely through inhibiting osteoblastogenesis and promoting osteoclastogenesis.


Assuntos
Povo Asiático , Densidade Óssea , Miostatina/metabolismo , Idoso , Diferenciação Celular , Proliferação de Células , Feminino , Humanos , Masculino , Modelos Biológicos , Miostatina/sangue , Osteoblastos/citologia , Osteoblastos/metabolismo , Magreza/sangue
13.
Chemphyschem ; 18(23): 3375-3383, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-28986952

RESUMO

As the simplest and most abundant dicarboxylic acid in the atmosphere, oxalic acid (OA) not only plays a key role in aerosol nucleation, but also acts as a prototypical compound for the investigation of intra- and intermolecular hydrogen-bonding interactions. A systematic theoretical study on the hydrated OA dimers performed by using DFT at the M06-2X/6-311++G(3df, 2p) level is discussed herein. The properties of hydrogen bonds in clusters are inspected through topological analysis by using atoms in molecules (AIM) theory. The most stable OA dimer involves a cyclic structure with two intermolecular hydrogen bonds. Calculations show that one H2 O has a slight effect on the hydrogen bonds, whereas two water molecules weaken and three water molecules break the two intermolecular hydrogen bonds between OAs. Furthermore, there are no hydrogen-bond interactions between OAs in almost all stable clusters as the number of H2 O molecules increases to four and five. Additionally, ionization and isomerization of OA through water-assisted proton-transfer phenomena are observed in tetra- and pentahydrates. This work provides new insights into the conversion of anhydrous OA into hydrated clusters that are helpful for further understanding the atmospheric nucleation process and nature of hydrogen bond.

14.
Environ Sci Technol ; 51(17): 9683-9690, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28753320

RESUMO

We introduce and assess a group contribution scheme by which the refractive index (RI) (λ = 589 nm) of nonabsorbing components common to secondary organic aerosols can be predicted from the molecular formula and chemical functionality. The group contribution method is based on representative values of ratios of the molecular polarizability and molar volume of different functional groups derived from data for a training set of 234 compounds. The training set consists of 106 nonaromatic compounds common to atmospheric aerosols, 64 aromatic compounds, and 64 compounds containing halogens; a separate group contribution model is provided for each of these three classes of compound. The resulting predictive model reproduces the RIs of compounds in the training set with mean errors of ±0.58, ±0.36, and ±0.30% for the nonaromatic, aromatic, and halogen-containing compounds, respectively. We then evaluate predictions from the group contribution model for compounds with no previously reported RI, comparing values with predictions from previous treatments and with measurements from single aerosol particle experiments. We illustrate how such comparisons can be used to further refine the predictive model. We suggest that the accuracy of this model is already sufficient to better constrain the optical properties of organic aerosol of known composition.


Assuntos
Aerossóis , Refratometria , Compostos Orgânicos
15.
Phys Chem Chem Phys ; 19(43): 29177-29186, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-28944797

RESUMO

We report a new method to investigate water transport kinetics in aerosol particles by using rapid scan FTIR spectroscopy combined with a custom-built pulse relative humidity (RH) control system. From real time in situ measurements of RH and composition using high time resolution infrared spectroscopy (0.12 s for one spectrum), and through achieving a high rate of RH change (as fast as 60% per second), we are able to investigate the competition between the gas and condensed phase diffusive transport limits of water for particles with mean diameter ∼3 µm and varying phase and viscosity. The characteristic time (τ) for equilibration in particle composition following a step change in RH is measured to quantify dissolution timescales for crystalline particles and to probe the kinetics of water evaporation and condensation in amorphous particles. We show that the dissolution kinetics are prompt for crystalline inorganic salt particles following an increase in RH from below to above the deliquescence RH, occurring on a timescale comparable to the timescale of the RH change (<1 s). For aqueous sucrose particles, we show that the timescales for both the drying and condensation processes can be delayed by many orders of magnitude, depending on the viscosity of the particles in the range 101 to 109 Pa s considered here. For amorphous particles, these kinetics are shown to be consistent with previous measurements of mass transfer rates in larger single particles. More specifically, the consistency suggests that fully understanding and modelling the complex microphysical processes and heterogeneities that form in viscous particles may not be necessary for estimating timescales for particle equilibration. A comparison of the kinetics for crystalline and amorphous particles illustrates the interplay of the rates of gas and condensed phase diffusion in determining the mass transport rates of water in aerosols.

16.
J Phys Chem A ; 121(41): 7968-7975, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28953392

RESUMO

Secondary organic aerosols (SOA) can exist in a glassy or semisolid state under low relative humidity (RH) conditions, in which the particles show nonequilibrium kinetic characteristics with changing ambient RH. Here, we selected internally mixed sucrose/NaNO3 droplets with organic to inorganic molar ratios (OIRs) of 1:8, 1:4, 1:2, and 1:1 as a proxy for multicomponent ambient aerosols to study crystal nucleation and growth processes and water transport under a highly viscous state with the combination of an RH-controlling system and a vacuum Fourier transform infrared (FTIR) spectrometer. The initial efflorescence RH (ERH) of NaNO3 decreased from ∼45% for pure NaNO3 droplets to ∼38.6 and ∼37.9% for the 1:8 and 1:4 sucrose/NaNO3 droplets, respectively, while no crystallization of NaNO3 occurred for the 1:2 and 1:1 droplets in the whole RH range. Thus, the addition of sucrose delayed the ERH and even completely inhibited nucleation of NaNO3 in the mixed droplets. In addition, the crystal growth of NaNO3 was suppressed in the 1:4 and 1:8 droplets most likely due to the slow diffusion of Na+ and NO3- ions at low RH. Water uptake/release of sucrose/NaNO3 particles quickly arrived at equilibrium at high RH, while the hygroscopic process was kinetically controlled under low RH. The half-time ratio between the liquid water content and the RH was used to describe the mass transfer behavior. For the 1:1 droplets, no mass limitation was observed with the ratio approaching to 1 when the RH was higher than 53%. The ratio increased 1 order of magnitude under an ultraviscous state with RH ranging from 53 to 15% and increased a further 1 order of magnitude at RH < 15% under a glassy state.

17.
J Phys Chem A ; 120(7): 1029-38, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26820230

RESUMO

Atmospheric aerosols are usually complex mixtures of inorganic and organic compounds. The hygroscopicity of mixed particles is closely related to their chemical composition and interactions between components, which is still poorly understood. In this study, the hygroscopic properties of submicron particles composed of NaCl and dicarboxylic acids including oxalic acid (OA), malonic acid (MA), and succinic acid (SA) with various mass ratios are investigated with a hygroscopicity tandem differential mobility analyzer (HTDMA) system. Both the Zdanovskii-Stokes-Robinson (ZSR) method and extended aerosol inorganics model (E-AIM) are applied to predict the water uptake behaviors of sodium chloride/dicarboxylic acid mixtures. For NaCl/OA mixed particles, the measured growth factors were significantly lower than predictions from the model methods, indicating a change in particle composition caused by chloride depletion. The hygroscopic growth of NaCl/MA particles was well described by E-AIM, and that of NaCl/SA particles was dependent upon mixing ratio. Compared with model predictions, it was determined that water uptake of the NaCl/OA mixture could be enhanced and could be closer to the predictions by addition of levoglucosan or malonic acid, which retained water even at low relative humidity (RH), leading to inhibition of HCl evaporation during dehydration. These results demonstrate that the coexisting hygroscopic species have a strong influence on the phase state of particles, thus affecting chemical interactions between inorganic and organic compounds as well as the overall hygroscopicity of mixed particles.

18.
J Phys Chem A ; 120(33): 6604-17, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27500411

RESUMO

Representing the physicochemical properties of aerosol particles of complex composition is of crucial importance for understanding and predicting aerosol thermodynamic, kinetic, and optical properties and processes and for interpreting and comparing analysis methods. Here, we consider the representations of the density and refractive index of aqueous-organic aerosol with a particular focus on the dependence of these properties on relative humidity and water content, including an examination of the properties of solution aerosol droplets existing at supersaturated solute concentrations. Using bulk phase measurements of density and refractive index for typical organic aerosol components, we provide robust approaches for the estimation of these properties for aerosol at any intermediate composition between pure water and pure solute. Approximately 70 compounds are considered, including mono-, di- and tricarboxylic acids, alcohols, diols, nitriles, sulfoxides, amides, ethers, sugars, amino acids, aminium sulfates, and polyols. We conclude that the molar refraction mixing rule should be used to predict the refractive index of the solution using a density treatment that assumes ideal mixing or, preferably, a polynomial dependence on the square root of the mass fraction of solute, depending on the solubility limit of the organic component. Although the uncertainties in the density and refractive index predictions depend on the range of subsaturated compositional data available for each compound, typical errors for estimating the solution density and refractive index are less than ±0.1% and ±0.05%, respectively. Owing to the direct connection between molar refraction and the molecular polarizability, along with the availability of group contribution models for predicting molecular polarizability for organic species, our rigorous testing of the molar refraction mixing rule provides a route to predicting refractive indices for aqueous solutions containing organic molecules of arbitrary structure.

19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(3): 887-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27400543

RESUMO

With combination of a pulse relative humidity (RH) controlling system and rapid scan vacuum FTIR technique, dynamic hygroscopicity of aerosol can be studied during pulse RH process. The time-resolved FTIR spectra can provide both water content of aerosols and water vapor amount of the aerosol ambient in sub-second time resolution. Experiments were performed on sodium nitrate, magnesium sulfate and magnesium nitrate aerosols. By comparing their hygroscopicity in pulse RH process and quasi-equilibrium state, for sodium nitrate aerosols, under time resolution of 0.12 s, we didn't see water transfer delay between aerosols and ambient environment. For magnesium sulfate aerosols, after gel formation, the water transfer speed is limited by the aerosol bulk phase. While for aged magnesium nitrate aerosols, non-soluble species generated and formed a film on the surface of aerosol particles, which slow down the water exchange rate between aerosols and ambient environment. This method turned out to be an efficient and convenient tool to elucidate the water transfer process controlled by bulk and surface for aerosols.

20.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(5): 1576-80, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-30001066

RESUMO

Aerosol aging is the one of the research hotspots in the field of physical chemistry of atmospheric particulates at present. This study evaluates the impact of flyash in heterogenous reaction through the comparision of ozone oxidation reaction kinetics between the oleic acid (OA) thin film and oleic acid coated flyash which are observed by in situ vacuum FTIR for the first time. Except for the fingerprint region, the main bands of infrared spectrum of the fresh OA thin film and the fresh OA coated flyash are similar. When the two samples are exposed in the 20 ppm ozone concentration, room temperature and dry (RH~0%) conditions respectively, the =CH absorption peak (3 050 cm-1) decreases while The ­OH stretch band (3 430 cm-1) increases. Moreover, The carboxylic C=O stretch band at 1 710 cm-1 decreases whereas a new ester group stretch band at 1 740 cm-1 appears and increases with increasing ozone exposure time. The OA component of the two samples can be gradually consumed and converted to some products containing hydroxyl and ester groups during the reactions through the changing trends of the infrared spectrum. The pseudo-first-order rate constant Kapp and the overall uptake coefficient γ, are obtained through changes in the absorbance of C=O stretching bands at 1 740 cm-1. The ozonolysis reaction rate constant of OA coated flyash is nearly double to the OA thin film. Since the surface area-to-volume ratio of OA coated flyash is larger than the OA thin film and the ozone concentrations are the same for the both reactions, the γ values for ozone uptake on OA thin film and OA coated flyash are (2.70±0.11)×10-4 and (3.70±0.13)×10-4. Rapid reaction rate of the flyash sample is due to the larger catalytic surface area and more valid catalytic effect compared to the OA thin film. This demonstrates that the flyash often easily leads to the secondary organic aerosols (SOAs) when the flyash unites with unsaturated organic acids and exposes to the ozone oxidation environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA