Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Cell ; 183(2): 490-502.e18, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33002410

RESUMO

The non-receptor protein tyrosine phosphatase (PTP) SHP2, encoded by PTPN11, plays an essential role in RAS-mitogen-activated protein kinase (MAPK) signaling during normal development. It has been perplexing as to why both enzymatically activating and inactivating mutations in PTPN11 result in human developmental disorders with overlapping clinical manifestations. Here, we uncover a common liquid-liquid phase separation (LLPS) behavior shared by these disease-associated SHP2 mutants. SHP2 LLPS is mediated by the conserved well-folded PTP domain through multivalent electrostatic interactions and regulated by an intrinsic autoinhibitory mechanism through conformational changes. SHP2 allosteric inhibitors can attenuate LLPS of SHP2 mutants, which boosts SHP2 PTP activity. Moreover, disease-associated SHP2 mutants can recruit and activate wild-type (WT) SHP2 in LLPS to promote MAPK activation. These results not only suggest that LLPS serves as a gain-of-function mechanism involved in the pathogenesis of SHP2-associated human diseases but also provide evidence that PTP may be regulated by LLPS that can be therapeutically targeted.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Células A549 , Animais , Criança , Pré-Escolar , Feminino , Mutação com Ganho de Função/genética , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Células-Tronco Embrionárias Murinas , Mutação/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Transdução de Sinais , Domínios de Homologia de src/genética
2.
Cell ; 160(1-2): 88-104, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25594176

RESUMO

The primary task of white adipose tissue (WAT) is the storage of lipids. However, "beige" adipocytes also exist in WAT. Beige adipocytes burn fat and dissipate the energy as heat, but their abundance is diminished in obesity. Stimulating beige adipocyte development, or WAT browning, increases energy expenditure and holds potential for combating metabolic disease and obesity. Here, we report that insulin and leptin act together on hypothalamic neurons to promote WAT browning and weight loss. Deletion of the phosphatases PTP1B and TCPTP enhanced insulin and leptin signaling in proopiomelanocortin neurons and prevented diet-induced obesity by increasing WAT browning and energy expenditure. The coinfusion of insulin plus leptin into the CNS or the activation of proopiomelanocortin neurons also increased WAT browning and decreased adiposity. Our findings identify a homeostatic mechanism for coordinating the status of energy stores, as relayed by insulin and leptin, with the central control of WAT browning.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Pró-Opiomelanocortina/metabolismo , Adiposidade , Animais , Regulação da Temperatura Corporal , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Obesidade/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo
3.
Blood ; 141(3): 244-259, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36206490

RESUMO

Acute myeloid leukemia (AML) is an aggressive blood cancer with poor prognosis. FMS-like tyrosine kinase receptor-3 (FLT3) is one of the major oncogenic receptor tyrosine kinases aberrantly activated in AML. Although protein tyrosine phosphatase PRL2 is highly expressed in some subtypes of AML compared with normal human hematopoietic stem and progenitor cells, the mechanisms by which PRL2 promotes leukemogenesis are largely unknown. We discovered that genetic and pharmacological inhibition of PRL2 significantly reduce the burden of FLT3-internal tandem duplications-driven leukemia and extend the survival of leukemic mice. Furthermore, we found that PRL2 enhances oncogenic FLT3 signaling in leukemia cells, promoting their proliferation and survival. Mechanistically, PRL2 dephosphorylates the E3 ubiquitin ligase CBL at tyrosine 371 and attenuates CBL-mediated ubiquitination and degradation of FLT3, leading to enhanced FLT3 signaling in leukemia cells. Thus, our study reveals that PRL2 enhances oncogenic FLT3 signaling in leukemia cells through dephosphorylation of CBL and will likely establish PRL2 as a novel druggable target for AML.


Assuntos
Leucemia Mieloide Aguda , Ubiquitina-Proteína Ligases , Humanos , Animais , Camundongos , Ubiquitina-Proteína Ligases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Transdução de Sinais/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Mutação
4.
EMBO J ; 39(2): e103637, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31803974

RESUMO

Although adoptive T-cell therapy has shown remarkable clinical efficacy in haematological malignancies, its success in combating solid tumours has been limited. Here, we report that PTPN2 deletion in T cells enhances cancer immunosurveillance and the efficacy of adoptively transferred tumour-specific T cells. T-cell-specific PTPN2 deficiency prevented tumours forming in aged mice heterozygous for the tumour suppressor p53. Adoptive transfer of PTPN2-deficient CD8+ T cells markedly repressed tumour formation in mice bearing mammary tumours. Moreover, PTPN2 deletion in T cells expressing a chimeric antigen receptor (CAR) specific for the oncoprotein HER-2 increased the activation of the Src family kinase LCK and cytokine-induced STAT-5 signalling, thereby enhancing both CAR T-cell activation and homing to CXCL9/10-expressing tumours to eradicate HER-2+ mammary tumours in vivo. Our findings define PTPN2 as a target for bolstering T-cell-mediated anti-tumour immunity and CAR T-cell therapy against solid tumours.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia Adotiva/métodos , Ativação Linfocitária/imunologia , Neoplasias/terapia , Proteína Tirosina Fosfatase não Receptora Tipo 2/fisiologia , Receptor ErbB-2/fisiologia , Receptores de Antígenos de Linfócitos T/imunologia , Transferência Adotiva , Animais , Apresentação de Antígeno/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/imunologia , Transdução de Sinais
5.
Tetrahedron ; 1562024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38618612

RESUMO

Natural products have been playing indispensable roles in the development of lifesaving drug molecules. They are also valuable sources for covalent protein modifiers. However, they often are scarce in nature and have complex chemical structures, which are limiting their further biomedical development. Thus, natural product-inspired small molecules which still contain the essence of the parent natural products but are readily available and amenable for structural modification, are important and desirable in searching for lead compounds for various disease treatment. Inspired by the complex and diverse ent-kaurene diterpenoids with significant biological activities, we have created a synthetically accessible and focused covalent library by incorporating the bicyclo[3.2.1]octane α-methylene ketone, which is considered as the pharmacophore of ent-kaurene diterpenoids, as half of the structure, and replacing the other half with much less complex but more druglike scaffolds. From this library, we have identified and characterized selective covalent inhibitors of protein tyrosine phosphatase SHP2, an important anti-cancer therapeutic target. The success of this study demonstrated the importance of creating and evaluating natural product-inspired library as well as their application in targeting challenging disease targets.

6.
J Biol Chem ; 298(7): 102089, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35640720

RESUMO

Toxoplasma gondii is an intracellular parasite that generates amylopectin granules (AGs), a polysaccharide associated with bradyzoites that define chronic T. gondii infection. AGs are postulated to act as an essential energy storage molecule that enable bradyzoite persistence, transmission, and reactivation. Importantly, reactivation can result in the life-threatening symptoms of toxoplasmosis. T. gondii encodes glucan dikinase and glucan phosphatase enzymes that are homologous to the plant and animal enzymes involved in reversible glucan phosphorylation and which are required for efficient polysaccharide degradation and utilization. However, the structural determinants that regulate reversible glucan phosphorylation in T. gondii are unclear. Herein, we define key functional aspects of the T. gondii glucan phosphatase TgLaforin (TGME49_205290). We demonstrate that TgLaforin possesses an atypical split carbohydrate-binding-module domain. AlphaFold2 modeling combined with hydrogen-deuterium exchange mass spectrometry and differential scanning fluorimetry also demonstrate the unique structural dynamics of TgLaforin with regard to glucan binding. Moreover, we show that TgLaforin forms a dual specificity phosphatase domain-mediated dimer. Finally, the distinct properties of the glucan phosphatase catalytic domain were exploited to identify a small molecule inhibitor of TgLaforin catalytic activity. Together, these studies define a distinct mechanism of TgLaforin activity, opening up a new avenue of T. gondii bradyzoite biology as a therapeutic target.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Glucanos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Polissacarídeos/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/parasitologia
7.
Anal Chem ; 95(12): 5214-5222, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36917636

RESUMO

Mass spectrometry imaging (MSI) is a powerful tool for label-free mapping of the spatial distribution of proteins in biological tissues. We have previously demonstrated imaging of individual proteoforms in biological tissues using nanospray desorption electrospray ionization (nano-DESI), an ambient liquid extraction-based MSI technique. Nano-DESI MSI generates multiply charged protein ions, which is advantageous for their identification using top-down proteomics analysis. In this study, we demonstrate proteoform mapping in biological tissues with a spatial resolution down to 7 µm using nano-DESI MSI. A substantial decrease in protein signals observed in high-spatial-resolution MSI makes these experiments challenging. We have enhanced the sensitivity of nano-DESI MSI experiments by optimizing the design of the capillary-based probe and the thickness of the tissue section. In addition, we demonstrate that oversampling may be used to further improve spatial resolution at little or no expense to sensitivity. These developments represent a new step in MSI-based spatial proteomics, which complements targeted imaging modalities widely used for studying biological systems.


Assuntos
Diagnóstico por Imagem , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Íons
8.
EMBO Rep ; 22(5): e52141, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33764618

RESUMO

Tyrosine phosphorylation of secretion machinery proteins is a crucial regulatory mechanism for exocytosis. However, the participation of protein tyrosine phosphatases (PTPs) in different exocytosis stages has not been defined. Here we demonstrate that PTP-MEG2 controls multiple steps of catecholamine secretion. Biochemical and crystallographic analyses reveal key residues that govern the interaction between PTP-MEG2 and its substrate, a peptide containing the phosphorylated NSF-pY83 site, specify PTP-MEG2 substrate selectivity, and modulate the fusion of catecholamine-containing vesicles. Unexpectedly, delineation of PTP-MEG2 mutants along with the NSF binding interface reveals that PTP-MEG2 controls the fusion pore opening through NSF independent mechanisms. Utilizing bioinformatics search and biochemical and electrochemical screening approaches, we uncover that PTP-MEG2 regulates the opening and extension of the fusion pore by dephosphorylating the DYNAMIN2-pY125 and MUNC18-1-pY145 sites. Further structural and biochemical analyses confirmed the interaction of PTP-MEG2 with MUNC18-1-pY145 or DYNAMIN2-pY125 through a distinct structural basis compared with that of the NSF-pY83 site. Our studies thus provide mechanistic insights in complex exocytosis processes.


Assuntos
Proteínas Tirosina Fosfatases não Receptoras , Proteínas Tirosina Fosfatases , Peptídeos , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(34): 20538-20548, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32788364

RESUMO

Tumor suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10) levels are frequently found reduced in human cancers, but how PTEN is down-regulated is not fully understood. In addition, although a compelling connection exists between PRL (phosphatase of regenerating liver) 2 and cancer, how this phosphatase induces oncogenesis has been an enigma. Here, we discovered that PRL2 ablation inhibits PTEN heterozygosity-induced tumorigenesis. PRL2 deficiency elevates PTEN and attenuates AKT signaling, leading to decreased proliferation and increased apoptosis in tumors. We also found that high PRL2 expression is correlated with low PTEN level with reduced overall patient survival. Mechanistically, we identified PTEN as a putative PRL2 substrate and demonstrated that PRL2 down-regulates PTEN by dephosphorylating PTEN at Y336, thereby augmenting NEDD4-mediated PTEN ubiquitination and proteasomal degradation. Given the strong cancer susceptibility to subtle reductions in PTEN, the ability of PRL2 to down-regulate PTEN provides a biochemical basis for its oncogenic propensity. The results also suggest that pharmacological targeting of PRL2 could provide a novel therapeutic strategy to restore PTEN, thereby obliterating PTEN deficiency-induced malignancies.


Assuntos
Carcinogênese , Proteínas Imediatamente Precoces/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/fisiologia , Animais , Feminino , Células HEK293 , Humanos , Longevidade , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ubiquitinação
10.
Molecules ; 28(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836790

RESUMO

Src homology 2 domain-containing phosphatase 2 (SHP2) is an attractive target for cancer therapy due to its multifaceted roles in both tumor and immune cells. Herein, we designed and synthesized a novel series of proteolysis targeting chimeras (PROTACs) using a SHP2 allosteric inhibitor as warhead, with the goal of achieving SHP2 degradation both inside the cell and in vivo. Among these molecules, compound P9 induces efficient degradation of SHP2 (DC50 = 35.2 ± 1.5 nM) in a concentration- and time-dependent manner. Mechanistic investigation illustrates that the P9-mediated SHP2 degradation requires the recruitment of the E3 ligase and is ubiquitination- and proteasome-dependent. P9 shows improved anti-tumor activity in a number of cancer cell lines over its parent allosteric inhibitor. Importantly, administration of P9 leads to a nearly complete tumor regression in a xenograft mouse model, as a result of robust SHP2 depletion and suppression of phospho-ERK1/2 in the tumor. Hence, P9 represents the first SHP2 PROTAC molecule with excellent in vivo efficacy. It is anticipated that P9 could serve not only as a new chemical tool to interrogate SHP2 biology but also as a starting point for the development of novel therapeutics targeting SHP2.


Assuntos
Neoplasias , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Humanos , Animais , Camundongos , Neoplasias/tratamento farmacológico , Linhagem Celular , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteólise
11.
Angew Chem Int Ed Engl ; 62(22): e202303818, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36973833

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) and T-cell protein tyrosine phosphatase (TC-PTP) play non-redundant negative regulatory roles in T-cell activation, tumor antigen presentation, insulin and leptin signaling, and are potential targets for several therapeutic applications. Here, we report the development of a highly potent and selective small molecule degrader DU-14 for both PTP1B and TC-PTP. DU-14 mediated PTP1B and TC-PTP degradation requires both target protein(s) and VHL E3 ligase engagement and is also ubiquitination- and proteasome-dependent. DU-14 enhances IFN-γ induced JAK1/2-STAT1 pathway activation and promotes MHC-I expression in tumor cells. DU-14 also activates CD8+ T-cells and augments STAT1 and STAT5 phosphorylation. Importantly, DU-14 induces PTP1B and TC-PTP degradation in vivo and suppresses MC38 syngeneic tumor growth. The results indicate that DU-14, as the first PTP1B and TC-PTP dual degrader, merits further development for treating cancer and other indications.


Assuntos
Neoplasias , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Neoplasias/tratamento farmacológico , Fosforilação , Imunoterapia
12.
J Proteome Res ; 21(10): 2515-2525, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36103635

RESUMO

Protein phosphatases play an essential role in normal cell physiology and the development of diseases such as cancer. The innate challenges associated with studying protein phosphatases have limited our understanding of their substrates, molecular mechanisms, and unique functions within highly coordinated networks. Here, we introduce a novel strategy using substrate-trapping mutants coupled with quantitative proteomics methods to identify physiological substrates of Src homology 2 containing protein tyrosine phosphatase 2 (SHP2) in a high-throughput manner. The technique integrates three parallel mass spectrometry-based proteomics experiments, including affinity isolation of substrate-trapping mutant complex using wild-type and SHP2 KO cells, in vivo global quantitative phosphoproteomics, and in vitro phosphatase reaction. We confidently identified 18 direct substrates of SHP2 in the epidermal growth factor receptor signaling pathways, including both known and novel SHP2 substrates. Docking protein 1 was further validated using biochemical assays as a novel SHP2 substrate, providing a mechanism for SHP2-mediated Ras activation. This advanced workflow improves the systemic identification of direct substrates of protein phosphatases, facilitating our understanding of the equally important roles of protein phosphatases in cellular signaling.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteômica , Receptores ErbB/metabolismo , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Transdução de Sinais/fisiologia
13.
J Biol Chem ; 295(18): 6187-6201, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32188694

RESUMO

The protein-tyrosine phosphatase SHP2 is an allosteric enzyme critical for cellular events downstream of growth factor receptors. Mutations in the SHP2 gene have been linked to many different types of human diseases, including developmental disorders, leukemia, and solid tumors. Unlike most SHP2-activating mutations, the T507K substitution in SHP2 is unique in that it exhibits oncogenic Ras-like transforming activity. However, the biochemical basis of how the SHP2/T507K variant elicits transformation remains unclear. By combining kinetic and biophysical methods, X-ray crystallography, and molecular modeling, as well as using cell biology approaches, here we uncovered that the T507K substitution alters both SHP2 substrate specificity and its allosteric regulatory mechanism. We found that although SHP2/T507K exists in the closed, autoinhibited conformation similar to the WT enzyme, the interactions between its N-SH2 and protein-tyrosine phosphatase domains are weakened such that SHP2/T507K possesses a higher affinity for the scaffolding protein Grb2-associated binding protein 1 (Gab1). We also discovered that the T507K substitution alters the structure of the SHP2 active site, resulting in a change in SHP2 substrate preference for Sprouty1, a known negative regulator of Ras signaling and a potential tumor suppressor. Our results suggest that SHP2/T507K's shift in substrate specificity coupled with its preferential association of SHP2/T507K with Gab1 enable the mutant SHP2 to more efficiently dephosphorylate Sprouty1 at pTyr-53. This dephosphorylation hyperactivates Ras signaling, which is likely responsible for SHP2/T507K's Ras-like transforming activity.


Assuntos
Substituição de Aminoácidos , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo
14.
Biochem Soc Trans ; 49(4): 1723-1734, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34431504

RESUMO

Protein tyrosine phosphatases (PTPs) counteract the enzymatic activity of protein tyrosine kinases to modulate levels of both normal and disease-associated protein tyrosine phosphorylation. Aberrant activity of PTPs has been linked to the progression of many disease states, yet no PTP inhibitors are currently clinically available. PTPs are without a doubt a difficult drug target. Despite this, many selective, potent, and bioavailable PTP inhibitors have been described, suggesting PTPs should once again be looked at as viable therapeutic targets. Herein, we summarize recently discovered PTP inhibitors and their use in the functional interrogation of PTPs in disease states. In addition, an overview of the therapeutic targeting of PTPs is described using SHP2 as a representative target.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas Tirosina Fosfatases/metabolismo , Animais , Humanos , Peso Molecular , Mycobacterium tuberculosis/enzimologia , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/química , Bibliotecas de Moléculas Pequenas/farmacologia
15.
Chem Rev ; 118(3): 1069-1091, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28541680

RESUMO

An appropriate level of protein phosphorylation on tyrosine is essential for cells to react to extracellular stimuli and maintain cellular homeostasis. Faulty operation of signal pathways mediated by protein tyrosine phosphorylation causes numerous human diseases, which presents enormous opportunities for therapeutic intervention. While the importance of protein tyrosine kinases in orchestrating the tyrosine phosphorylation networks and in target-based drug discovery has long been recognized, the significance of protein tyrosine phosphatases (PTPs) in cellular signaling and disease biology has historically been underappreciated, due to a large extent to an erroneous assumption that they are largely constitutive and housekeeping enzymes. Here, we provide a comprehensive examination of a number of regulatory mechanisms, including redox modulation, allosteric regulation, and protein oligomerization, that control PTP activity. These regulatory mechanisms are integral to the myriad PTP-mediated biochemical events and reinforce the concept that PTPs are indispensable and specific modulators of cellular signaling. We also discuss how disruption of these PTP regulatory mechanisms can cause human diseases and how these diverse regulatory mechanisms can be exploited for novel therapeutic development.


Assuntos
Proteínas Tirosina Fosfatases/metabolismo , Regulação Alostérica , Animais , Fosfatase 6 de Especificidade Dupla/antagonistas & inibidores , Fosfatase 6 de Especificidade Dupla/classificação , Fosfatase 6 de Especificidade Dupla/metabolismo , Humanos , Oxirredução , Fosforilação , Multimerização Proteica , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/classificação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
16.
Immunol Rev ; 269(1): 212-27, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26683155

RESUMO

Toll-like receptors (TLR) are transmembrane pattern recognition receptors that recognize microbial ligands and signal for production of inflammatory cytokines and type I interferon in macrophages and dendritic cells (DC). Whereas TLR-induced inflammatory mediators are required for pathogen clearance, many are toxic to the host and can cause pathological inflammation when over-produced. This is demonstrated by the role of TLR-induced cytokines in autoimmune diseases, such as rheumatoid arthritis, inflammatory bowel disease, and systemic lupus erythematosus. Because of the potent effects of TLR-induced cytokines, we have diverse mechanisms to dampen TLR signaling. Here, we highlight three pathways that participate in inhibition of TLR responses in macrophages and DC, and their implications in autoimmunity; A20, encoded by the TNFAIP3 gene, Lyp encoded by the PTPN22 gene, and the BCAP/PI3K pathway. We present new findings that Lyp promotes TLR responses in primary human monocytes and that the autoimmunity risk Lyp620W variant is more effective at promoting TLR-induced interleukin-6 than the non-risk Lyp620R protein. This suggests that Lyp serves to downregulate a TLR inhibitory pathway in monocytes, and we propose that Lyp inhibits the TREM2/DAP12 inhibitory pathway. Overall, these pathways demonstrate distinct mechanisms of negative regulation of TLR responses, and all impact autoimmune disease pathogenesis and treatment.


Assuntos
Doenças Autoimunes/imunologia , Células Dendríticas/imunologia , Macrófagos/imunologia , Células Mieloides/imunologia , Receptores Toll-Like/metabolismo , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Imunomodulação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Proteína Tirosina Fosfatase não Receptora Tipo 22/metabolismo , Transdução de Sinais , Proteína 3 Induzida por Fator de Necrose Tumoral alfa
18.
Bioorg Med Chem Lett ; 29(14): 1836-1841, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31104993

RESUMO

Genetic activation of the bacterial two-component signal transduction system, CpxRA, abolishes the virulence of a number of pathogens in human and murine infection models. Recently, 2,3,4,9-tetrahydro-1H-carbazol-1-amines were shown to activate the CpxRA system by inhibiting the phosphatase activity of CpxA. Herein we report the initial structure-activity relationships of this scaffold by focusing on three approaches 1) A-ring substitution, 2) B-ring deconstruction to provide N-arylated amino acid derivatives, and 3) C-ring elimination to give 2-ethylamino substituted indoles. These studies demonstrate that the A-ring is amenable to functionalization and provides a promising avenue for continued optimization of this chemotype. Further investigations revealed that the C-ring is not necessary for activity, although it likely provides conformational constraint that is beneficial to potency, and that the (R) stereochemistry is required at the primary amine. Simplification of the scaffold through deconstruction of the B-ring led to inactive compounds, highlighting the importance of the indole core. A new lead compound 26 was identified, which manifests a ∼30-fold improvement in CpxA phosphatase inhibition over the initial hit. Comparison of amino and des-amino derivatives in bacterial strains differing in membrane permeability and efflux capabilities demonstrate that the amine is required not only for target engagement but also for permeation and accumulation in Escherichia coli.


Assuntos
Carbazóis/uso terapêutico , Animais , Carbazóis/farmacologia , Humanos , Camundongos , Relação Estrutura-Atividade
19.
Genes Dev ; 25(19): 2069-78, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21979919

RESUMO

The biological response to tumor necrosis factor (TNF) involves activation of MAP kinases. Here we report a mechanism of MAP kinase activation by TNF that is mediated by the Rho GTPase family members Rac/Cdc42. This signaling pathway requires Src-dependent activation of the guanosine nucleotide exchange factor Vav, activation of Rac/Cdc42, and the engagement of the Rac/Cdc42 interaction site (CRIB motif) on mixed-lineage protein kinases (MLKs). We show that this pathway is essential for full MAP kinase activation during the response to TNF. Moreover, this MLK pathway contributes to inflammation in vivo.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células Cultivadas , Ativação Enzimática , Inflamação/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Tirosina/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
20.
J Am Chem Soc ; 140(50): 17465-17473, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30461272

RESUMO

Abiespiroside A (1), beshanzuenone C (2), and beshanzuenone D (3) belong to the Abies sesquiterpenoid family. Beshanzuenones C (2) and D (3) are isolated from the critically endangered Chinese fir tree species Abies beshanzuensis and demonstrated weak inhibiting activity against protein tyrosine phosphatase 1B (PTP1B). We describe herein the first total syntheses of these Abies sesquiterpenoids relying on the sustainable and inexpensive chiral pool molecule (+)-carvone. The syntheses feature a palladium-catalyzed hydrocarbonylative lactonization to install the 6,6-fused bicyclic ring system and a Dreiding-Schmidt reaction to build the oxaspirolactone moiety of these target molecules. Our chemical total syntheses of these Abies sesquiterpenoids have enabled (i) the validation of beshanzuenone C's weak PTP1B inhibiting potency, (ii) identification of new synthetic analogs with promising and selective protein tyrosine phosphatase SHP2 inhibiting potency, and (iii) preparation of azide-tagged probe molecules for target identification via a chemoproteomic approach. The latter has resulted in the identification and evaluation of DNA polymerase epsilon subunit 3 (POLE3) as one of the novel cellular targets of these Abies sesquiterpenoids and their analogs. More importantly, via POLE3 inactivation by probe molecule 29 and knockdown experiment, we further demonstrated that targeting POLE3 with small molecules may be a novel strategy for chemosensitization to DNA damaging drugs such as etoposide in cancer.


Assuntos
Abies/química , Inibidores Enzimáticos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Sesquiterpenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ciclização , DNA Polimerase III/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Sinergismo Farmacológico , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Etoposídeo/farmacologia , Humanos , Nucleoproteínas/antagonistas & inibidores , Sesquiterpenos/síntese química , Sesquiterpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA