Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Nat Immunol ; 20(1): 18-28, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30510222

RESUMO

Cyclic GMP-AMP synthase (cGAS) is a key sensor responsible for cytosolic DNA detection. Here we report that GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) is critical for DNA sensing and efficient activation of cGAS. G3BP1 enhanced DNA binding of cGAS by promoting the formation of large cGAS complexes. G3BP1 deficiency led to inefficient DNA binding by cGAS and inhibited cGAS-dependent interferon (IFN) production. The G3BP1 inhibitor epigallocatechin gallate (EGCG) disrupted existing G3BP1-cGAS complexes and inhibited DNA-triggered cGAS activation, thereby blocking DNA-induced IFN production both in vivo and in vitro. EGCG administration blunted self DNA-induced autoinflammatory responses in an Aicardi-Goutières syndrome (AGS) mouse model and reduced IFN-stimulated gene expression in cells from a patient with AGS. Thus, our study reveals that G3BP1 physically interacts with and primes cGAS for efficient activation. Furthermore, EGCG-mediated inhibition of G3BP1 provides a potential treatment for cGAS-related autoimmune diseases.


Assuntos
Doenças Autoimunes do Sistema Nervoso/metabolismo , DNA Helicases/metabolismo , Complexos Multiproteicos/metabolismo , Malformações do Sistema Nervoso/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Animais , Autoantígenos/imunologia , Autoantígenos/metabolismo , Doenças Autoimunes do Sistema Nervoso/tratamento farmacológico , Doenças Autoimunes do Sistema Nervoso/genética , Catequina/análogos & derivados , Catequina/uso terapêutico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Citosol/imunologia , Citosol/metabolismo , DNA/imunologia , DNA/metabolismo , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , Modelos Animais de Doenças , Exodesoxirribonucleases/genética , Células HEK293 , Células HeLa , Humanos , Interferons/metabolismo , Camundongos , Camundongos Knockout , Malformações do Sistema Nervoso/tratamento farmacológico , Malformações do Sistema Nervoso/genética , Fármacos Neuroprotetores/uso terapêutico , Fosfoproteínas/genética , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Proteínas de Ligação a Poli-ADP-Ribose/genética , Ligação Proteica , RNA Helicases/antagonistas & inibidores , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/antagonistas & inibidores , Proteínas com Motivo de Reconhecimento de RNA/genética
2.
Proc Natl Acad Sci U S A ; 121(33): e2403950121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39116137

RESUMO

Miniaturized reconstructive spectrometers play a pivotal role in on-chip and portable devices, offering high-resolution spectral measurement through precalibrated spectral responses and AI-driven reconstruction. However, two key challenges persist for practical applications: artificial intervention in algorithm parameters and compatibility with complementary metal-oxide-semiconductor (CMOS) manufacturing. We present a cutting-edge miniaturized reconstructive spectrometer that incorporates a self-adaptive algorithm referenced with Fabry-Perot resonators, delivering precise spectral tests across the visible range. The spectrometers are fabricated with CMOS technology at the wafer scale, achieving a resolution of ~2.5 nm, an average wavelength deviation of ~0.27 nm, and a resolution-to-bandwidth ratio of ~0.46%. Our approach provides a path toward versatile and robust reconstructive miniaturized spectrometers and facilitates their commercialization.

3.
EMBO Rep ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090319

RESUMO

The tandem Tudor-like domain-containing protein Spindlin1 (SPIN1) is a transcriptional coactivator with critical functions in embryonic development and emerging roles in cancer. However, the involvement of SPIN1 in DNA damage repair has remained unclear. Our study shows that SPIN1 is recruited to DNA lesions through its N-terminal disordered region that binds to Poly-ADP-ribose (PAR), and facilitates homologous recombination (HR)-mediated DNA damage repair. SPIN1 promotes H3K9me3 accumulation at DNA damage sites and enhances the interaction between H3K9me3 and Tip60, thereby promoting the activation of ATM and HR repair. We also show that SPIN1 increases chemoresistance. These findings reveal a novel role for SPIN1 in the activation of H3K9me3-dependent DNA repair pathways, and suggest that SPIN1 may contribute to cancer chemoresistance by modulating the efficiency of double-strand break (DSB) repair.

4.
Arterioscler Thromb Vasc Biol ; 44(3): 533-544, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38235555

RESUMO

Both hyperlipidemia and thrombosis contribute to the risks of atherosclerotic cardiovascular diseases, which are the leading cause of death and reduced quality of life in survivors worldwide. The accumulation of lipid-rich plaques on arterial walls eventually leads to the rupture or erosion of vulnerable lesions, triggering excessive blood clotting and leading to adverse thrombotic events. Lipoproteins are highly dynamic particles that circulate in blood, carry insoluble lipids, and are associated with proteins, many of which are involved in blood clotting. A growing body of evidence suggests a reciprocal regulatory relationship between blood clotting and lipid metabolism. In this review article, we summarize the observations that lipoproteins and lipids impact the hemostatic system, and the clotting-related proteins influence lipid metabolism. We also highlight the gaps that need to be filled in this area of research.


Assuntos
Aterosclerose , Trombose , Humanos , Qualidade de Vida , Coagulação Sanguínea , Aterosclerose/patologia , Fatores de Coagulação Sanguínea , Lipoproteínas , Fibrinólise
5.
Mol Ther ; 32(1): 204-217, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37952086

RESUMO

Inner ear hair cells detect sound vibration through the deflection of mechanosensory stereocilia. Cytoplasmic protein TPRN has been shown to localize at the taper region of the stereocilia, and mutations in TPRN cause hereditary hearing loss through an unknown mechanism. Here, using biochemistry and dual stimulated emission depletion microscopy imaging, we show that the TPRN, together with its binding proteins CLIC5 and PTPRQ, forms concentric rings in the taper region of stereocilia. The disruption of TPRN rings, triggered by the competitive inhibition of the interaction of TPRN and CLIC5 or exogenous TPRN overexpression, leads to stereocilia degeneration and severe hearing loss. Most importantly, restoration of the TPRN rings can rescue the damaged auditory function of Tprn knockout mice by exogenously expressing TPRN at an appropriate level in HCs via promoter recombinant adeno-associated virus (AAV). In summary, our results reveal highly structured TPRN rings near the taper region of stereocilia that are crucial for stereocilia function and hearing. Also, TPRN ring restoration in stereocilia by AAV-Tprn effectively repairs damaged hearing, which lays the foundation for the clinical application of AAV-mediated gene therapy in patients with TPRN mutation.


Assuntos
Surdez , Perda Auditiva , Animais , Humanos , Camundongos , Surdez/genética , Audição/genética , Perda Auditiva/genética , Perda Auditiva/terapia , Camundongos Knockout , Proteínas/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Estereocílios/metabolismo
6.
J Am Chem Soc ; 146(33): 23356-23364, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39115108

RESUMO

This paper describes a gradual transition of charge transport across molecular junctions from coherent to incoherent tunneling by increasing the number and polarizability of halide substituents of phenyl-terminated aliphatic monolayers of the form S(CH2)10OPhXn, X = F, Cl, Br, or I; n = 0, 1, 2, 3, or 5. In contrast to earlier work where incoherent tunneling was induced by introducing redox-active groups or increasing the molecular length, we show that increasing the polarizability, while keeping the organization of the monolayer structure unaltered, results in a gradual change in the mechanism of tunneling of charge carriers where the activation energy increased from 23 meV for n = 0 (associated with coherent tunneling) to 257 meV for n = 5 with X = Br (associated with incoherent tunneling). Interestingly, this increase in incoherent tunneling rate with polarizability resulted in an improved molecular diode performance. Our findings suggest an avenue to improve the electronic function of molecular devices by introducing polarizable atoms.

7.
Hum Mol Genet ; 31(15): 2595-2605, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35288736

RESUMO

Prior studies have shown that genetic factors play important roles in ovarian endometriosis. Herein, we first analyzed the whole-exome sequencing data from 158 patients with ovarian endometriosis and 385 local control women without endometriosis. Among which, a rare missense variant in the MMP7 (p.I79T, rs150338402) gene exhibited a significant frequency difference. This rare variant was screened in an additional 1176 patients and 600 control women via direct DNA sequencing. Meanwhile, a total of 38 available clinical characteristics were collected. Our results showed 45 out of 1334 (3.37%) patients, while 15 out of 985 control women (1.52%) (P = 0.0076) harbored this rare variant, respectively. This rare variant was associated with clinical features such as follicle-stimulating hormone (Padj = 0.0342), luteinizing hormone (Padj = 0.0038), progesterone (Padj = 1.4e-7), testosterone (Padj = 0.0923), total bilirubin (Padj = 0.0699), carcinoembryonic antigen (Padj = 0.0665) and squamous cell carcinoma antigen (Padj = 0.0817), respectively. Functional assays showed that this rare variant could promote cell migration, invasion, epithelial-mesenchymal transition (EMT) and increase the proteolytic protein activity of MMP7, implicating that the increased capacities of cell invasion, migration and EMT might be mediated by enhanced proteolytic activity of MMP7 mutant. These results showed that the MMP7 rare missense variant (p.I79T) played important roles in the pathogenesis of ovarian endometriosis. In conclusion, we identified, for the first time, a significantly enriched MMP7 rare variant in ovarian endometriosis; this rare variant was closely associated with certain clinical features in ovarian endometriosis; thus, it could be a promising early diagnostic biomarker for this disease.


Assuntos
Endometriose , Metaloproteinase 7 da Matriz/genética , Neoplasias Ovarianas , Endometriose/genética , Transição Epitelial-Mesenquimal , Feminino , Humanos , Metaloproteinase 7 da Matriz/metabolismo , Mutação de Sentido Incorreto/genética , Neoplasias Ovarianas/patologia , Sequenciamento do Exoma
8.
Apoptosis ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824477

RESUMO

The upregulation of programmed death ligand 1 (PD-L1) plays a crucial role in facilitating cancer cells to evade immune surveillance through immunosuppression. However, the precise regulatory mechanisms of PD-L1 in hepatocellular carcinoma (HCC) remain undefined. The correlation between PD-L1 and ubiquitin-like molecules (UBLs) was studied using sequencing data from 20 HCC patients in our center, combined with TCGA data. Specifically, the association between FAT10 and PD-L1 was further validated at both the protein and mRNA levels in HCC tissues from our center. Subsequently, the effect of FAT10 on tumor progression and immune suppression was examined through both in vivo and in vitro experiments. Utilizing sequencing data, qPCR, and Western blotting assays, we confirmed that FAT10 was highly expressed in HCC tissues and positively correlated with PD-L1 expression. Additionally, in vitro experiments demonstrated that the overexpression of FAT10 fostered the proliferation, migration, and invasion of HCC cells. Furthermore, the overexpression of FAT10 in HCC cells led to an increase in PD-L1 expression, resulting in the inhibition of T cell proliferation and the enhancement of HCC cell resistance to T cell-mediated cytotoxicity. Moreover, in vivo experiments utilizing the C57BL/6 mouse model revealed that overexpression of FAT10 effectively suppressed the infiltration of CD8 + GZMB + and CD8 + Ki67 + T cells, as well as reduced serum levels of TNF-α and IFN-γ. Mechanistically, we further identified that FAT10 upregulates PD-L1 expression via activating the PI3K/AKT/mTOR pathway, but not in a ubiquitin-like modification. In conclusion, our findings indicate that FAT10 promotes immune evasion of HCC via upregulating PD-L1 expression, suggesting its potential as a novel target to enhance the efficiency of immunotherapy in HCC.

9.
Anal Chem ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167707

RESUMO

Nonylphenol (NP) is an important fine chemical raw material and intermediate that is widely utilized in industry and may be distributed in aquatic ecosystems. Following its entry into the food and water cycles, it can subsequently enter the human body and potentially harm the human reproductive system. For the purpose of monitoring NP in water, it is thus essential to build a straightforward, affordable, and robust electrochemical sensor. Based on a two-step chemical modification proceeding and an electrostatic self-assembly effect, a double-modified ß-cyclodextrin functionalized multiwalled carbon nanotube sensor (HE-ß-CD-CTAC/F-MWCNTs) has been successfully constructed. It incorporates the excellent host-guest interaction ability of ß-cyclodextrin and the high chemical activity of cetyltrimethylammonium chloride (CTAC), and the carbon nanotubes have an enormous particular surface area and strong electrical conductivity. The electrochemical oxidation reaction of NP with the sensor is controlled by a surface adsorption process of equal numbers of protons and electrons. In accordance with the optimized experimental parameters, the limit of detection (LOD) for the sensor is 0.13 µM, and it responds linearly to NP in the concentration range of 1-200 µM. Meanwhile, the sensor has excellent repeatability, stability, and immunity to interference. For the detection of NP in real water samples, the sensor also showed an excellent recovery rate (92.8%-98.5%) and relative standard deviation (1.16%-3.26%).

10.
Fungal Genet Biol ; 173: 103911, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960372

RESUMO

Coprinopsis cinerea, a model fungus, is utilized for investigating the developmental mechanisms of basidiomycetes. The development of basidiomycetes is a highly organized process that requires coordination among genetic, environmental, and physiological factors. Oxylipins, a class of widely distributed signaling molecules, play crucial roles in fungal biology. Among oxylipins, the sexual pheromone-inducing factors (psi factors) have been identified as key regulators of the balance between asexual and sexual spore development in Ascomycetes. Linoleate dioxygenases are enzymes involved in the biosynthesis of psi factors, yet their specific physiological functions in basidiomycete development remain unclear. In this study, linoleate dioxygenases in basidiomycetes were identified and characterized. Phylogenetic analysis revealed that linoleate dioxygenases from Basidiomycota formed a distinct clade, with linoleate dioxygenases from Agaricomycetes segregating into three groups and those from Ustilaginomycetes forming a separate group. Both basidiomycete and ascomycete linoleate dioxygenases shared two characteristic domains: the N-terminal of linoleate dioxygenase domain and the C-terminal of cytochrome P450 domain. While the linoleate dioxygenase domains exhibited similarity between basidiomycetes and ascomycetes, the cytochrome P450 domains displayed high diversity in key sites. Furthermore, the gene encoding the linoleate dioxygenase Ccldo1 in C. cinerea was knocked out, resulting in a significant increase in fruiting body formation without affecting asexual conidia production. This observation suggests that secondary metabolites synthesized by CcLdo1 negatively regulate the sexual reproduction process in C. cinerea while not influencing the asexual reproductive process. This study represents the first identification of a gene involved in secondary metabolite synthesis that regulates basidiocarp development in a basidiomycete.


Assuntos
Basidiomycota , Carpóforos , Proteínas Fúngicas , Filogenia , Carpóforos/genética , Carpóforos/crescimento & desenvolvimento , Carpóforos/enzimologia , Basidiomycota/genética , Basidiomycota/enzimologia , Basidiomycota/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Agaricales/genética , Agaricales/enzimologia , Agaricales/crescimento & desenvolvimento , Agaricales/metabolismo , Regulação Fúngica da Expressão Gênica , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/genética , Esporos Fúngicos/enzimologia
11.
Opt Express ; 32(11): 18858-18870, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859033

RESUMO

A universally applicable approach is proposed for the fabrication of fiber-optic polymer sensors. The hollow-core fibers (HCFs) with inner diameters of 30 µm, 50 µm, and 75 µm are spliced coaxially with dual-hole fiber (DHF) or photonic crystal fiber (PCF). Owing to the sized-matched air holes within HCF and DHF/PCF, an interconnected in-fiber microchannel is constructed, which facilitates rapid and complete filling of the HCF's central hole with liquid glue. After the ultraviolet-induced polymerization, a polymer Fabry-Perot interferometer is achieved by cutting the HCF end with a desired cavity length. Besides, the interference visibility is significantly enhanced by adding a refractive-index-modulated polymer cap onto the cutting surface. Experimental results demonstrate the optimized interference spectra and the interconnection of the matched air-hole fibers. The polymer sensor exhibits a signal-to-noise ratio of 56.8 dB for detecting pulsed ultrasonic waves, which is more than twice that of a partially polymer-filled sensor. Due to the hermetically-sealed structure, the sensor probe presents constrained performance with a temperature sensitivity of 230.2 pm/°C and a humidity sensitivity of 93.7 pm/%RH, which can be further improved by releasing the polymer waveguide from fiber cladding. Based on interconnected holey fibers, the proposed approach has a uniform size-controlled polymer waveguide dimension with increased spectrum visibility, rendering it suitable for a diverse range of microstructure-matched optical fibers.

12.
FASEB J ; 37(3): e22802, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36786696

RESUMO

Recurrent spontaneous abortion (RSA) is characterized by two or more consecutive pregnancy losses in the first trimester of pregnancy, experienced by 5% of women during their reproductive age. As a complex pathological process, the etiology of RSA remains poorly understood. Recent studies have established that gene expression changes dramatically in human endometrial stromal cells (ESCs) during decidualization. N6-methyladenosine (m6 A) modification is the most prevalent epigenetic modification of mRNA in eukaryotic cells and it is closely related to the occurrence and development of many pathophysiological phenomena. In this study, we first confirmed that high levels of m6 A mRNA methylation in decidual tissues are associated with RSA. Then, we used m6 A-modified RNA immunoprecipitation sequence (m6 A-seq) and RNA sequence (RNA-seq) to identify the differentially expressed m6 A methylation in decidual tissues from RSA patients and identified the key genes involved in abnormal decidualization by bioinformatics analysis. Using m6 A-seq, we identified a total of 2169 genes with differentially expressed m6 A methylation, of which 735 m6 A hypermethylated genes and 1434 m6 A hypomethylated genes were identified. Further joint analysis of m6 A-seq and RNA-seq revealed that 133 genes were m6 A modified with mRNA expression. GO and KEGG analyses indicated that these unique genes were mainly enriched in environmental information processing pathways, including the cytokine-cytokine receptor interaction and PI3K-Akt signaling pathway. In summary, this study uncovered the transcriptome-wide m6 A modification pattern in decidual tissue of RSA, which provides a theoretical basis for further research into m6 A modification and new therapeutic strategies for RSA.


Assuntos
Aborto Habitual , Fosfatidilinositol 3-Quinases , Gravidez , Humanos , Feminino , Metilação , Transcriptoma , Adenosina/genética
13.
Neurochem Res ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916813

RESUMO

Dysfunction of Schwann cells, including cell apoptosis, autophagy inhibition, dedifferentiation, and pyroptosis, is a pivotal pathogenic factor in induced diabetic peripheral neuropathy (DPN). Histone deacetylases (HDACs) are an important family of proteins that epigenetically regulate gene transcription by affecting chromatin dynamics. Here, we explored the effect of HDAC1 on high glucose-cultured Schwann cells. HDAC1 expression was increased in diabetic mice and high glucose-cultured RSC96 cells, accompanied by cell apoptosis. High glucose also increased the mitochondrial pathway apoptosis-related Bax/Bcl-2 and cleaved caspase-9/caspase-9 ratios and decreased endoplasmic reticulum response-related GRP78, CHOP, and ATF4 expression in RSC96 cells (P < 0.05). Furthermore, overexpression of HDAC1 increased the ratios of Bax/Bcl-2, cleaved caspase-9/caspase-9, and cleaved caspase-3 and reduced the levels of GRP78, CHOP, and ATF4 in RSC96 cells (P < 0.05). In contrast, knockdown of HDAC1 inhibited high glucose-promoted mitochondrial pathway apoptosis and suppressed the endoplasmic reticulum response. Moreover, RNA sequencing revealed that U4 spliceosomal RNA was significantly reduced in HDAC1-overexpressing RSC96 cells. Silencing of U4 spliceosomal RNA led to an increase in Bax/Bcl-2 and cleaved caspase-9 and a decrease in CHOP and ATF4. Conversely, overexpression of U4 spliceosomal RNA blocked HDAC1-promoted mitochondrial pathway apoptosis and inhibited the endoplasmic reticulum response. In addition, alternative splicing analysis of HDAC1-overexpressing RSC96 cells showed that significantly differential intron retention (IR) of Rpl21, Cdc34, and Mtmr11 might be dominant downstream targets that mediate U4 deficiency-induced Schwann cell dysfunction. Taken together, these findings indicate that HDAC1 promotes mitochondrial pathway-mediated apoptosis and inhibits the endoplasmic reticulum stress response in high glucose-cultured Schwann cells by decreasing the U4 spliceosomal RNA/IR of Rpl21, Cdc34, and Mtmr11.

14.
Cell Mol Life Sci ; 80(4): 86, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36917323

RESUMO

Mechanosensitive hair cells (HCs) in the cochlear sensory epithelium are critical for sound detection and transduction. Mammalian HCs in the cochlea undergo cytogenesis during embryonic development, and irreversible damage to hair cells postnatally is a major cause of deafness. During the development of the organ of Corti, HCs and supporting cells (SCs) originate from the same precursors. In the neonatal cochlea, damage to HCs activates adjacent SCs to act as HC precursors and to differentiate into new HCs. However, the plasticity of SCs to produce new HCs is gradually lost with cochlear development. Here, we delineate an essential role for the guanine nucleotide exchange factor Net1 in SC trans-differentiation into HCs. Net1 overexpression mediated by AAV-ie in SCs promoted cochlear organoid formation and HC differentiation under two and three-dimensional culture conditions. Also, AAV-Net1 enhanced SC proliferation in Lgr5-EGFPCreERT2 mice and HC generation as indicated by lineage tracing of HCs in the cochleae of Lgr5-EGFPCreERT2/Rosa26-tdTomatoloxp/loxp mice. We further found that the up-regulation of Wnt/ß-catenin and Notch signaling in AAV-Net1-transduced cochleae might be responsible for the SC proliferation and HC differentiation. Also, Net1 overexpression in SCs enhanced SC proliferation and HC regeneration and survival after HC damage by neomycin. Taken together, our study suggests that Net1 might serve as a potential target for HC regeneration and that AAV-mediated gene regulation may be a promising approach in stem cell-based therapy in hearing restoration.


Assuntos
Transdiferenciação Celular , Células Ciliadas Auditivas , Animais , Camundongos , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Cóclea , Camundongos Transgênicos
15.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260378

RESUMO

Centrosome duplication and DNA replication are two pivotal events that higher eukaryotic cells use to initiate proliferation. While DNA replication is initiated through origin licensing, centrosome duplication starts with cartwheel assembly and is partly controlled by CP110. However, the upstream coordinator for both events has been, until now, a mystery. Here, we report that suppressor of fused protein (Sufu), a negative regulator of the Hedgehog (Hh) pathway playing a significant role in restricting the trafficking and function of glioma-related (Gli) proteins, acts as an upstream switch by facilitating CP110 phosphorylation by CDK2, promoting intranuclear Cdt1 degradation and excluding prereplication complex (pre-RC) components from chromosomes, independent of its canonical function in the Hh pathway. We found that Sufu localizes to both the centrosome and the nucleus and that knockout of Sufu induces abnormalities including centrosome amplification, increased nuclear size, multipolar spindle formation, and polyploidy. Serum stimulation promotes the elimination of Sufu from the centrosome by vesicle release at the ciliary tip and from the nucleus via protein degradation, which allows centrosome duplication and DNA replication to proceed. Collectively, this work reveals a mechanism through which Sufu negatively regulates the G1-S transition.


Assuntos
Centrossomo/metabolismo , Replicação do DNA , Proteínas Repressoras/metabolismo , Animais , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Morte Celular , Núcleo Celular/metabolismo , Cílios/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Vesículas Citoplasmáticas/metabolismo , Fibroblastos/metabolismo , Fase G1 , Células HEK293 , Células HeLa , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Mitose , Mutação/genética , Fosforilação , Proteólise , Proteínas Repressoras/genética , Fase S
16.
Behav Res Methods ; 56(3): 2581-2594, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37528294

RESUMO

Affective picture databases with a single facial expression or body posture in one image have been widely applied to investigate emotion. However, to date, there was no standardized database containing the stimuli which involve multiple emotional signals in social interactive scenarios. The current study thus developed a pictorial set comprising 274 images depicting two Chinese adults' interactive scenarios conveying emotions of happiness, anger, sadness, fear, disgust, and neutral. The data of the valence and arousal ratings of the scenes and the emotional categories of the scenes and the faces in the images were provided in the present study. Analyses of the data collected from 70 undergraduate students suggested high reliabilities of the valence and arousal ratings of the scenes and high judgmental agreements in categorizing the scene and facial emotions. The findings suggested that the present dataset is well constructed and could be useful for future studies to investigate the emotion recognition or empathy in social interactions in both healthy and clinical (e.g., ASD) populations.


Assuntos
Emoções , Felicidade , Adulto , Humanos , Ira , Medo , Expressão Facial , China
17.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3857-3867, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39099359

RESUMO

The study investigated the protective effect and mechanism of 2-phenylethyl-beta-glucopyranoside(Phe) from Huaizhong No.1 Rehmannia glutinosa on hypoxic pulmonary hypertension(PH), aiming to provide a theoretical basis for clinical treatment of PAH. Male C57BL/6N mice were randomly divided into normal group, model group, positive drug(bosentan, 100 mg·kg~(-1)) group, and low-and high-dose Phe groups(20 and 40 mg·kg~(-1)). Except for the normal group, all other groups were continuously subjected to model induction in a 10% hypoxic environment for 5 weeks, with oral administration for 14 days starting from the 3rd week. The cardiopulmonary function, right ventricular pressure, cough and asthma index, lung injury, cell apoptosis, oxidative stress-related indicators, immune cells, and phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR)/hypoxic inducible factor 1α(HIF-1α) pathway-related proteins or mRNA levels were examined. Furthermore, hypoxia-induced pulmonary arterial smooth muscle cell(PASMC) were used to further explore the mechanism of Phe intervention in PH combined with PI3K ago-nist(740Y-P). The results showed that Phe significantly improved the cardiopulmonary function of mice with PH, decreased right ventricular pressure, cough and asthma index, and lung injury, reduced cell apoptosis, oxidative stress-related indicators, and nuclear levels of phosphorylated Akt(p-Akt) and phosphorylated mTOR(p-mTOR), inhibited the expression levels of HIF-1α and PI3K mRNA and proteins, and maintained the immune cell homeostasis in mice. Further mechanistic studies revealed that Phe significantly reduced the viability and migration ability of hypoxia-induced PASMC, decreased the expression of HIF-1α and PI3K proteins and nuc-lear levels of p-Akt and p-mTOR, and this effect was blocked by 740Y-P. Therefore, it is inferred that Phe may exert anti-PH effects by alleviating the imbalance of oxidative stress and apoptosis in lung tissues and regulating immune levels, and its mechanism may be related to the regulation of the PI3K/Akt/mTOR/HIF-1α pathway. This study is expected to provide drug references and research ideas for the treatment of PH.


Assuntos
Glucosídeos , Hipertensão Pulmonar , Subunidade alfa do Fator 1 Induzível por Hipóxia , Hipóxia , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Rehmannia , Serina-Treonina Quinases TOR , Animais , Masculino , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Camundongos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Rehmannia/química , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Glucosídeos/farmacologia , Hipóxia/tratamento farmacológico , Hipóxia/fisiopatologia , Hipóxia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/química , Apoptose/efeitos dos fármacos
18.
Angew Chem Int Ed Engl ; 63(15): e202400577, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38284909

RESUMO

Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts have exhibited encouraging oxygen reduction reaction (ORR) activity. Nevertheless, the insufficient long-term stability remains a widespread concern owing to the inevitable 2-electron byproducts, H2O2. Here, we construct Co-N-Cr cross-interfacial electron bridges (CIEBs) via the interfacial electronic coupling between Cr2O3 and Co-N-C, breaking the activity-stability trade-off. The partially occupied Cr 3d-orbitals of Co-N-Cr CIEBs induce the electron rearrangement of CoN4 sites, lowering the Co-OOH* antibonding orbital occupancy and accelerating the adsorption of intermediates. Consequently, the Co-N-Cr CIEBs suppress the two-electron ORR process and approach the apex of Sabatier volcano plot for four-electron pathway simultaneously. As a proof-of-concept, the Co-N-Cr CIEBs is synthesized by the molten salt template method, exhibiting dominant 4-electron selectively and extremely low H2O2 yield confirmed by Damjanovic kinetic analysis. The Co-N-Cr CIEBs demonstrates impressive bifunctional oxygen catalytic activity (▵E=0.70 V) and breakthrough durability including 100 % current retention after 10 h continuous operation and cycling performance over 1500 h for Zn-air battery. The hybrid interfacial configuration and the understanding of the electronic coupling mechanism reported here could shed new light on the design of superdurable M-N-C catalysts.

19.
Angew Chem Int Ed Engl ; 63(20): e202402657, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477874

RESUMO

The main group metals are commonly perceived as catalytically inert in the context of oxygen reduction reactions (ORR) due to the delocalized valence orbitals. Regulating the local environment and structure of metal center coordinated by nitrogen ligands (M-Nx) is a promising approach to accelerate catalytic dynamics. Herein, we, for the first time, report the atomically dispersed Al catalysts coordinated with N and C atoms for 4-electron ORR. The axial coordinated pyrrolyl N group (No) is constructed in the Al-N4-No moiety to regulate the p-band structure of Al center, effectively steering the local environment and structure of the square planar Al-N4 sites, which typically exhibit too strong interaction with ORR intermediates. The dynamic covalency competition of axial Al-No and Al-O bonding could endow the Al center with moderate hybridization between Al 3p orbital and O 2p orbital, alleviating the binding energy of ORR intermediates. The as-prepared Al-N4-No electrocatalyst exhibits excellent ORR activity, selectivity, and durability, along with the rapid kinetics as demonstrated by in situ Raman spectroscopy. This work offers a fundamental comprehension of the fine regulation on p-band and guides the rational design of main-group metal-based single atom catalysts.

20.
Nat Mater ; 21(12): 1403-1411, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36411348

RESUMO

To realize molecular-scale electrical operations beyond the von Neumann bottleneck, new types of multifunctional switches are needed that mimic self-learning or neuromorphic computing by dynamically toggling between multiple operations that depend on their past. Here, we report a molecule that switches from high to low conductance states with massive negative memristive behaviour that depends on the drive speed and number of past switching events, with all the measurements fully modelled using atomistic and analytical models. This dynamic molecular switch emulates synaptic behavior and Pavlovian learning, all within a 2.4-nm-thick layer that is three orders of magnitude thinner than a neuronal synapse. The dynamic molecular switch provides all the fundamental logic gates necessary for deep learning because of its time-domain and voltage-dependent plasticity. The synapse-mimicking multifunctional dynamic molecular switch represents an adaptable molecular-scale hardware operable in solid-state devices, and opens a pathway to simplify dynamic complex electrical operations encoded within a single ultracompact component.


Assuntos
Eletricidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA