Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
J Cell Biochem ; 124(3): 373-381, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36649442

RESUMO

Esterase D (ESD) is a nonspecific esterase widely distributed in various organisms. ESD plays an important role in regulating cholesterol efflux, inhibiting viral replication and lung cancer growth. MT2A (metallothionein 2A) is the most important isoform of metallothionein (MTs) in human and high expression of MT2A in tumors represents poor prognosis and metastatic behavior. However, there are no reports about the molecular mechanism of ESD in the regulation of tumor metastasis. In this study, we found for the first time that activation ESD promoted its interaction with MT2A and decreased the protein level of MT2A, which resulting in the concentration of free zinc ions up-regulated, and inhibited the migration of A549 lung cancer cells in vitro.


Assuntos
Carboxilesterase , Neoplasias Pulmonares , Metalotioneína , Humanos , Células A549 , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Carboxilesterase/genética , Carboxilesterase/metabolismo , Movimento Celular/genética , Movimento Celular/fisiologia
2.
J Cell Biochem ; 123(4): 798-806, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35118704

RESUMO

Hypochlorous acid (HOCl) is an essential signal for the regulation of cancer cell fate, including autophagy and apoptosis. HOCl regulated autophagy by affecting the oxidation modification of glucose-regulated protein 78 (GRP78) and the activity of GRP78 ATPase. The mechanism of GRP78 ATPase in cell apoptosis has however not yet been clarified. Here we reported that ZBM-H, as a probe of HOCl, was able to directly bind to GRP78 in the presence or absence of ATP. Following ZBM-H treatment, the interaction between GRP78 and annexin A7 (ANXA7) was promoted, and this was accompanied by increased phosphorylation of integrin ß4 (ITGB4). In addition, ZBM-H enhanced the phosphorylation of ANXA7. ABO, an inhibitor of ANXA7, inhibited ZBM-H-induced ITGB4 phosphorylation and apoptosis, while ANXA7 activator SEC had opposite effect. Collectively, these data provide new evidence for the mechanism by which ZBM-H-induced activation of GRP78 ATPase regulates apoptosis of A549 lung cancer cells.


Assuntos
Anexina A7 , Neoplasias Pulmonares , Adenosina Trifosfatases/metabolismo , Anexina A7/genética , Apoptose , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo
3.
J Fluoresc ; 32(6): 2151-2157, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35953561

RESUMO

In this paper, a fluorescent probe (QFR) for the detective work of 4-methylthiophenol was successfully synthesized with a simple but highly effective probe structure. In the buffer solution (V(ACN): V(PBS) = 3:7), by observing the response of the probe after the fluorescence was turned on, we concluded that the probe had good characteristics such as high selectivity, low detection limit (116 nM), and fast response speed (20 min). In addition, the probe was a rare fluorescent probe that detected 4-methylthiophenol but did not respond to thiophenol. Fluorescence intensity was linearly related to 4-methylthiophenol concentration in the range of 0 to 2 equivalents (0-10 µM). The probe demonstrated good results in the determination of the recovery rate (92.28% to 110.1%) of actual water samples, and has great potential in environmental monitoring.


Assuntos
Corantes Fluorescentes , Poluentes Químicos da Água , Corantes Fluorescentes/química , Poluentes Químicos da Água/análise , Espectrometria de Fluorescência , Monitoramento Ambiental , Água
4.
J Cell Physiol ; 236(6): 4750-4763, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33615471

RESUMO

Excessively high cholesterol content in the blood leads to nonalcohol fatty liver disease (NAFLD) and arteriosclerosis. Although there are increasing publications and patent applications to lower blood cholesterol with small chemical molecules, limited effective drugs can be available in clinic. It is necessary to uncover new targets and drugs to alleviate high cholesterol. Esterase D (ESD) is abundant in liver and it remains unknown about its role in cholesterol metabolism. Here we reported that small chemical molecule fluorescigenic pyrazoline derivative 5 (FPD5), a new ESD activator, could effectively reverse high blood cholesterol level and prevent fatty liver and arteriosclerosis in apoE-/- mice fed the high-fat diet. We also observed that FPD5 could reduce oxidized low density lipoprotein (oxLDL)-induced formation of foam cells. To further investigate the mechanism of FPD5 action on blood cholesterol modulation, we found that ESD trigged by FPD5 was aggregated in lysosome and interacted with Jun activation domain binding protein 1 (JAB1). ESD served as a deacetylase to remove Thr89 acetylation of JAB1 and increased its activity; thus, promoting the ATP-binding cassette transporters A1 (ABCA1) to accelerate cholesterol efflux. Our findings demonstrate that FPD5 decreases blood cholesterol level to ameliorate NAFLD and arteriosclerosis through ESD/JAB1/ABCA1 pathway, and ESD functions as a novel nonclassical deacetylase that hydrolyzes serine/threonine acetyl group. Our findings not only highlight that FPD5 may be a pioneer drug for alleviating blood cholesterol but also indicate that ESD is a potential drug target that promotes cholesterol metabolism.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Anticolesterolemiantes/farmacologia , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Complexo do Signalossomo COP9/metabolismo , Colesterol/sangue , Inibidores Enzimáticos/farmacologia , Células Espumosas/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Tioléster Hidrolases/antagonistas & inibidores , Acetilação , Animais , Doenças da Aorta/sangue , Doenças da Aorta/enzimologia , Doenças da Aorta/patologia , Aterosclerose/sangue , Aterosclerose/enzimologia , Aterosclerose/patologia , Biomarcadores/sangue , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação para Baixo , Células Espumosas/enzimologia , Células Espumosas/patologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Placa Aterosclerótica , Processamento de Proteína Pós-Traducional , Células RAW 264.7 , Tioléster Hidrolases/metabolismo
5.
Apoptosis ; 26(1-2): 111-131, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33389358

RESUMO

H2S is actual an endogenous signaling gas molecule and involved in a range of cell physiological processes. However, the mechanism of endogenous H2S regulating autophagy and apoptosis has not been thoroughly investigated. Here, we try to address this issue by using a H2S probe, (E)-2-(4-(4-(7-(diethylamino)-2-oxo-2H-chromene-3-carbonyl)-piperazin-1-yl)-styryl)-1, 3, 3-trimethyl-3H-indol-1-ium iodide (CPC), which could react with endogenous H2S. Herein, we reported that CPC inhibited autophagy and decreased the expression and activity of NF-E2-related factor 2 (Nrf2), then induced cell apoptosis. CPC inhibited autophagy and promoted apoptosis by inhibiting Nrf2 activation, which was H2S dependent. Furthermore, we found that CPC inhibited Nrf2 nucleus translocation by inhibiting glutathionylation of Kelch-like ECH-associated protein 1 (Keap1) at the Cys434 residue. CPC also inhibited various cancer cell growth, but had no effect on normal cell growth in vitro, and inhibited A549 cancer growth, but did not affect normal angiogenesis in vivo. Therefore, we not only found a new inhibitor of autophagy and Nrf2, but also suggested a novel mechanism that endogenous H2S could regulate autophagy, apoptosis and Nrf2 activity through regulating glutathionylation of Keap1 at the Cys434 residue.


Assuntos
Apoptose , Autofagia , Glutationa/metabolismo , Sulfeto de Hidrogênio/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Motivos de Aminoácidos , Linhagem Celular , Cisteína/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Biochem Biophys Res Commun ; 571: 195-200, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34330064

RESUMO

Autophagy of vascular endothelial cells (VECs) plays an important role in maintaining vascular homeostasis. Lipid droplets (LDs) are organelles that can be formed in response to various stimuli, including excessive lipid or various stresses. LDs sequester toxic lipids, thereby preventing lipotoxic cell damage and have a complex relationship with autophagy. In the previous study, we identified a novel Grp94 inhibitor HCP1 inhibited apoptosis in VECs. Here we found that HCP1 targeted LDs and promoted the accumulation of LDs in VECs. Our results showed that HCP1 upregulated the protein levels of autophagy-related proteins. We demonstrated that HCP1 upregulated the number of LDs and suppressed autophagy by inhibiting Grp94. Therefore, we provided HCP1 as a new VECs autophagy inhibitor targeting LDs, which might be a potential compound in the treatment of VECs autophagy related vascular diseases.


Assuntos
Autofagia/efeitos dos fármacos , Cumarínicos/farmacologia , Células Endoteliais/efeitos dos fármacos , Gotículas Lipídicas/efeitos dos fármacos , Pirazóis/farmacologia , Células Cultivadas , Cumarínicos/química , Humanos , Pirazóis/química
7.
FASEB J ; 34(9): 12932-12945, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33000523

RESUMO

We previously demonstrated that Tetraticopeptide 4 (TTC4) inhibited apoptosis in vascular endothelial cells (VEC) deprived of serum and fibroblast growth factor 2 (FGF-2). In this study, we aimed to resolve the mechanism of TTC4 inhibiting VEC apoptosis. TTC4, predicted as a HSP70 co-chaperone protein, may regulate the fate of cells by affecting the activity of HSP70, however, there is no experimental evidence showing the interaction of TTC4 and HSP70. Using Co-immunoprecipitation (Co-IP), we demonstrated that TTC4 interacted with HSP70. If HSP70 was knockdown, TTC4 no longer suppressed apoptosis. Furthermore, we found ABO, an inhibitor of annexin A7 (ANXA7) GTPase, could promote the interaction of TTC4 and HSP70 and the translocation of ANXA7 to lysosome. At the same time, ABO inhibited the interaction of HSP70 and ANXA7. Moreover, Akt, as a downstream effector of HSP70 was upregulated, and ANXA7 translocating to lysosome protected the stability of lysosomal membrane. Here, we discovered a special mechanism by which TTC4 inhibited apoptosis via HSP70 in VECs. On the one hand, increasing TTC4 and HSP70 interaction upregulated Akt that inhibited apoptosis. On the other hand, decreasing HSP70 and ANXA7 interaction promoted the translocation of ANXA7 to lysosome, which inhibited apoptosis through protecting the lysosomal membrane stability.


Assuntos
Anexina A7/metabolismo , Apoptose , Proteínas de Choque Térmico HSP70/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Lisossomos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Humanos , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
J Org Chem ; 86(18): 12737-12744, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34459206

RESUMO

A mild and high efficient method to prepare indolizines by two-component reaction with the acid as the catalyst was developed. In this reaction, a new ring efficiently formed in one-step reaction. A wide range of substrates could be applied and the desired products were obtained in 8-95% yields under metal-free conditions. Different indolizine derivatives (compounds 3a-3n) were synthesized by general conditions and microwave irradiation conditions, and compound 3a gave the best results with an isolated yield of 95% and 82%, respectively. The structures of synthesized compounds were characterized by spectral analysis, and compound 3m was confirmed by single crystal X-ray analysis. UV-vis absorption and fluorescence properties of these compounds were correlated with substituent groups on indolizine rings.


Assuntos
Indolizinas , Pirazóis , Catálise , Estrutura Molecular , Espectrometria de Fluorescência
9.
Cell Mol Biol Lett ; 26(1): 50, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34875997

RESUMO

BACKGROUND: Esterase D (ESD) is a nonspecific esterase that detoxifies formaldehyde. Many reports have stated that ESD activity is associated with a variety of physiological and pathological processes. However, the detailed signaling pathway of ESD remains poorly understood. METHODS: Considering the advantages of the small chemical molecule, our recent work demonstrated that 4-chloro-2-(5-phenyl-1-(pyridin-2-yl)-4,5-dihydro-1H-pyrazol-3-yl) phenol (FPD5) activates ESD, and will be a good tool for studying ESD further. Firstly, we determined the interaction between ESD and FK506 binding protein 25 (FKBP25) by yeast two-hybrid assay and co-immunoprecipitation (CO-IP) and analyzed the phosphorylation levels of mTORC1, P70S6K and 4EBP1 by western blot. Furthermore, we used the sulforhodamine B (SRB) and chick chorioallantoic membrane (CAM) assay to analyze cell viability in vitro and in vivo after treatment with ESD activator FPD5. RESULTS: We screened FKBP25 as a candidate protein to interact with ESD by yeast two-hybrid assay. Then we verified the interaction between ESD and endogenous FKBP25 or ectopically expressed GFP-FKBP25 by CO-IP. Moreover, the N-terminus (1-90 aa) domain of FKBP25 served as the crucial element for their interaction. More importantly, ESD reduced the K48-linked poly-ubiquitin chains of FKBP25 and thus stabilized cytoplasmic FKBP25. ESD also promoted FKBP25 to bind more mTORC1, suppressing the activity of mTORC1. In addition, ESD suppressed tumor cell growth in vitro and in vivo through autophagy. CONCLUSIONS: These findings provide novel evidence for elucidating the molecular mechanism of ESD and ubiquitination of FKBP25 to regulate autophagy and cancer cell growth. The ESD/FKBP25/mTORC1 signaling pathway is involved in inhibiting tumor cell growth via regulating autophagy.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Tioléster Hidrolases/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Galinhas , Células HEK293 , Células HeLa , Humanos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Pirazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tacrolimo/farmacologia , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/fisiologia
10.
Biochem Biophys Res Commun ; 528(2): 256-260, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32473753

RESUMO

Despite significant process in ubiquitin modification by using traditional genetic methods, chemical small molecules that directly target and modify ubiquitin are little reported. Here, we find that a fluorescigenic pyrazoline derivative (FPD5) could do so effectively. Molecule docking revealed that lysine 11 of ubiquitin was the key contact residue. FPD5, with stronger fluorescence, elevated the ubiquitination of beclin 1 (BECN1) and promoted autophagy. This study highlights that targeting ubiquitin by chemical small molecules enables us to modulate ubiquitination and the downstream signaling in the ubiquitin system.


Assuntos
Pirazóis/metabolismo , Ubiquitina/metabolismo , Células A549 , Autofagia , Proteína Beclina-1/metabolismo , Fluorescência , Células HEK293 , Células HeLa , Humanos , Lisina/metabolismo , Pirazóis/química , Ubiquitinação
11.
Analyst ; 145(8): 2937-2944, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32104823

RESUMO

A unique fluorescent probe (ZACA) for the monitoring of SO2 derivatives was developed from coumarin and benzoindoles based on FRET and ICT. ZACA exhibited an active emission signal, large Stokes shift, wide emission window distance, and high photostability. It also possessed many advantages in the ratiometric detection of HSO3-/SO32- including low detection limit and high selectivity and sensitivity. Importantly, ZACA was successfully applied in the ratiometric detection of endogenous HSO3-/SO32- in living cells with excellent cellular imaging capability (1 µM) and mitochondria-targeting ability (co-localization coefficient: 0.91).


Assuntos
Corantes Fluorescentes/química , Mitocôndrias/metabolismo , Sulfitos/análise , Linhagem Celular Tumoral , Cumarínicos/síntese química , Cumarínicos/química , Corantes Fluorescentes/síntese química , Humanos , Indóis/síntese química , Indóis/química , Limite de Detecção , Microscopia de Fluorescência
12.
Bioorg Med Chem Lett ; 30(18): 127394, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32717611

RESUMO

Hypochlorous acid (HOCl) is an important signaling molecule for cell survival. However, it has been reported that excessive HOCl contributes to a variety of diseases such as cancers. And in cancer cells, the level of HOCl is much higher than that in normal cells. Here a coumarin-based fluorescent probe 7-Diethylamino-3-(2,3-dihydro-1H-perimidin-2-yl)-chromen-2-one (CAN) was successfully developed for HOCl detection. The probe could be oxidized by HOCl to induce significant change in its fluorescence profile, which made it feasible for ratiometric detecting HOCl. CAN (below 1 µM) did not affect cell viability and had good capacity in ratiometric detection of HOCl in RAW 264.7 cells. CAN induced A549 apoptosis and inhibited tumor growth in vitro and in vivo. And CAN could decrease the chlorination activity of myeloperoxidase (MPO) in A549. These findings suggested that CAN (below 1 µM) would develop into a HOCl probe. High activity of MPO and level of HOCl might be helpful for A549 survival. A549 could be induced apoptosis by reducing the HOCl level by CAN. It implies a new anticancer strategy by targeting HOCl.


Assuntos
Cumarínicos/síntese química , Corantes Fluorescentes/síntese química , Halogenação/efeitos dos fármacos , Ácido Hipocloroso/análise , Peroxidase/metabolismo , Células A549 , Animais , Apoptose , Cátions/química , Cumarínicos/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Ácido Hipocloroso/metabolismo , Metais/química , Camundongos , Imagem Óptica , Oxirredução , Células RAW 264.7 , Transdução de Sinais
13.
Bioorg Med Chem Lett ; 30(11): 127150, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32247735

RESUMO

People with reduced esterase D (ESD) activity are susceptible to many diseases. However, how to activate ESD is still unknown. To address the question, we identified that 4-chloro-2-(5-phenyl-1-(pyridin-2-yl)-4, 5-dihydro-1H-pyrazol-3-yl) phenol (FPD5) could be a good candidate activator for ESD activity. We found that FPD5 could increase ESD activity in a dose-dependent way. FPD5 bound directly to ESD at Lys180 rather than its ubiquitination site Lys213. Site-directed mutagenesis at the binding site or the ubiquitination site inhibited FPD5 action. FPD5 increased the level of ESD mono-ubiquitination and mutESD K213A completely inhibited this action. Our findings highlighted the activation mechanism of ESD via promoting the mono-ubiquitination of ESD.


Assuntos
Bibliotecas de Moléculas Pequenas/química , Tioléster Hidrolases/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Microscopia Confocal , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Pirazóis/química , Bibliotecas de Moléculas Pequenas/metabolismo , Tioléster Hidrolases/química , Tioléster Hidrolases/genética , Ubiquitinação
14.
Apoptosis ; 24(7-8): 552-561, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30911960

RESUMO

More and more studies reported that diverse biological roles of long noncoding RNAs were usually dependent on their subcellular location. In our previous study, long noncoding RNA CERNA1 was identified both located in cytoplasm and nucleus of vascular endothelial cells (VECs). And CERNA1 in cytoplasm, which functioned as competitive endogenous RNA (ceRNA), alleviated the apoptosis of VECs. However, the function of CERNA1 in nucleus was still unclear. In this study, we found that nuclear CERNA1 positively regulated BCL2L10, which accelerated the serum and FGF-2 starvation-induced apoptosis of VECs, by enhancing the histone modification level of H3K9ac and H3K4me3 in BCL2L10 promoter region. Furthermore, due to the paradoxical function, we investigated the variation of CERNA1 subcellular location in VECs. The results showed that, as the change of apoptosis status, CERNA1 altered the cellular distribution in VECs. And the annexin A7 inhibitor, ABO (6-amino-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine), not only increased the expression of CERNA1 by TIA-1, but also specifically improved its cytoplasm distribution proportion so as to inhibit the apoptosis of VECs. This evidence suggested that the subcellular location of CERNA1 played an important role in the VECs apoptosis and ABO might be a potential chemical molecule for therapy of VECs apoptosis related cardiovascular diseases.


Assuntos
Anexina A7/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Benzoxazinas/farmacologia , Células Endoteliais da Veia Umbilical Humana/patologia , RNA Longo não Codificante/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Código das Histonas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Longo não Codificante/genética , Antígeno-1 Intracelular de Células T/genética , Antígeno-1 Intracelular de Células T/metabolismo
15.
Biochem Biophys Res Commun ; 511(1): 92-98, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30770100

RESUMO

Vascular endothelial cell (VEC) apoptosis takes part in the development of various cardiovascular diseases. Heat shock protein 90 (HSP90) regulates apoptosis through various apoptosis associated client proteins. In previous study, we identified a novel HSP90 inhibitor HCP1 induced apoptosis in A549 human lung cancer cells. Here, we found that low-concentration HCP1 (1 µM, 2 µM) suppressed VEC apoptosis caused by serum and fibroblast growth factor 2 (FGF-2) deprivation. HCP1 directly bound to glucose-regulated protein 94 (Grp94), an isoform of HSP90 located in endoplasmic reticulum, and HCP1 selectively inhibited Grp94 activity via binding to site 3. Overexpression of Grp94 inhibited the anti-apoptotic effect of HCP1 in human umbilical vein endothelial cells. Therefore, we provided HCP1 as a new VEC apoptosis inhibitor which might be a potential compound in the treatment of VEC apoptosis related vascular diseases. And we provided new pieces of evidence to understand the role of Grp94 in VEC apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Glicoproteínas de Membrana/antagonistas & inibidores , Pirazóis/farmacologia , Benzopiranos/química , Benzopiranos/farmacologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Glicoproteínas de Membrana/metabolismo , Pirazóis/química
16.
Bioorg Med Chem ; 27(13): 2845-2856, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31103402

RESUMO

Biological activities of a series of fluorescent compounds against human lung cancer cell line A549 were investigated. The results showed that (E)-1,3,3-trimethyl-2-(4-(piperidin-1-yl)styryl)-3H-indol-1-ium iodide (8) and (E)-2-(5,5-dimethyl-3-(4-(piperazin-1-yl)styryl)cyclohex-2-en-1-ylidene) malononitrile (11) could inhibit the growth of A549 cancer cells in a dose and time-dependent manner. Furthermore, compound 8 could trigger autophagy and apoptosis, but not obviously induce necrosis under the stimulatory condition. Therefore, 8 can be used as autophagy activator to investigate the regulatory mechanism of autophagy and may offer a new candidate for the treatment of lung cancer.


Assuntos
Células A549/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Pulmonares/fisiopatologia , Humanos , Estrutura Molecular
17.
J Cardiovasc Pharmacol ; 67(4): 312-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26751265

RESUMO

Vascular endothelial cell (VEC) apoptosis is involved in the development of atherosclerosis and other cardiovascular diseases. We previously found that ethyl 1-(2-hydroxy-3-aroxypropyl)-3-aryl-1H-pyrazole -5-carboxylate derivatives (3a-o) play important roles in cell fate control. In this study, among the 15 compounds, we further screened 2 compounds, 3d and 3k, that suppressed VEC apoptosis induced by deprivation of serum and fibroblast growth factor 2. To clarify which chiral enantiomers of 3d and 3k functioned, we synthesized 3d-S and its enantiomer 3d-R, 3k-S, and its enantiomer 3k-R. Then, we investigated the apoptosis-inhibiting activity of the chiral compounds in VECs. Four small molecules, 3d-S, 3d-R, 3k-S, 3k-R, significantly elevated VEC viability and inhibited apoptosis. Furthermore, these small molecules could obviously decrease the level of integrin ß4 that plays a key role in the regulation of VEC apoptosis. 3k-S and 3k-R increased Bcl-2/Bax ratio and reduced reactive oxygen species levels dramatically. Therefore, we provide new VEC apoptosis inhibitors. These compounds may be potential agents in the prevention of vascular diseases associated with VEC apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Pirazóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Integrina beta4/metabolismo , Pirazóis/química , Estereoisomerismo , Doenças Vasculares/prevenção & controle
18.
J Fluoresc ; 26(6): 2079-2086, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27530632

RESUMO

A new ratiometric fluorescent probe based on Förster resonance energy transfer (FRET) for sensing lysosomal pH has been developed. The probe (RMPM) was composed of imidazo[1,5-α]pyridine quaternary ammonium salt fluorophore as the FRET donor and the rhodamine moiety as the FRET acceptor. It's the first time to report that imidazo[1,5-α]pyridine quaternary ammonium salt acts as the FRET donor. The ratio of fluorescence intensity of the probe at two wavelengths (I424/I581) changed significantly and responded linearly toward minor pH changes in the range of 5.4-6.6. It should be noted that it's rare to report that a ratiometric pH probe could detect so weak acidic pH with pKa = 6.31. In addition, probe RMPM exhibited excellent water-solubility, fast-response, all-right selectivity and brilliant reversibility. Moreover, RMPM has been successfully applied to sensing lysosomal pH in HeLa cells and has low cytotoxicity.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Lisossomos/química , Compostos de Amônio Quaternário/química , Espectrometria de Fluorescência/métodos , Água/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Processamento de Imagem Assistida por Computador
19.
Chemistry ; 21(52): 19058-63, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26568524

RESUMO

A simple ratiometric probe (Naph-Rh) has been designed and synthesized based on a through-bond energy transfer (TBET) system for sensing HOCl. In this probe, rhodamine thiohydrazide and naphthalene formyl were connected by simple synthesis methods to construct a structure of monothio-bishydrazide. Free probe Naph-Rh showed only the emission of naphthalene. When probe Naph-Rh reacted with HOCl, monothio-bishydrazide could be converted into 1,2,4-oxadiazole, which not only ensured that the donor and the acceptor were connected with electronically conjugated bonds, but also resulted in the spiro-ring opening and the emission of rhodamine. Therefore, a typical TBET process took place. The probe possessed high-energy transfer efficiency and large pseudo-Stokes shifts. As the first TBET probe for HOCl, Naph-Rh showed excellent selectivity and sensitivity toward HOCl over other reactive oxygen species (ROS)/reactive nitrogen species (RNS), and could respond fast to a low concentration of HOCl in the real sample. In addition, the probe was suitable for imaging HOCl in living cells due to its real-time response, excellent resolution, and reduced cytotoxicity.


Assuntos
Corantes Fluorescentes/química , Ácido Hipocloroso/química , Naftalenos/química , Oxidiazóis/química , Diagnóstico por Imagem , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos
20.
Cell Biol Toxicol ; 31(1): 15-27, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25575676

RESUMO

Nano-Mg(OH)2 is efficiently used in pollutant adsorption and removal due to its high adsorption capability, low-cost, and recyclability. A recent research from our group showed that Mg(OH)2 nanoflakes are not evidently internalized by cancer cells and are not cytotoxic. But the biocompatibility and potential toxicity of nano-Mg(OH)2 in a normal biological system are largely unclear. Nanoparticles could affect the function of endothelial cells, and endothelial dysfunction represents an early sign of lesion within the vasculature. Here, we applied the human umbilical vein vascular endothelial cells (HUVECs) as an in vitro model of the endothelium to study the cytotoxicity of nano-Mg(OH)2. Our results showed that nano-Mg(OH)2 at 200 µg/ml impaired proliferation and induced dysfunction of HUVECs, but did not result in cell necrosis and apoptosis. Transmission electron microscopy images and immunofluorescence results showed that the nano-Mg(OH)2 could enter HUVECs through caveolin-1-mediated endocytosis. Nano-Mg(OH)2 at high concentrations decreased the level of caveolin-1 and increased the activity of endothelial nitric oxide synthase (eNOS), thus leading to the production of excess nitric oxide (NO). In this work, we provide the cell damage concentrations of nano-Mg(OH)2 nanoparticles, and we propose a mechanism of injury induced by nano-Mg(OH)2 in HUVECs.


Assuntos
Caveolina 1/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Hidróxido de Magnésio/toxicidade , Nanopartículas Metálicas/toxicidade , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Endocitose , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Hidróxido de Magnésio/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA