Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 48(16): 4201-4204, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37581992

RESUMO

In this work, a photoacoustic (PA) gas sensor with a micro-embedded acoustic resonator for gas leakage detection was demonstrated. The micro-embedded acoustic resonator was fabricated by putting a leaky hollow-core fiber (L-HCF) into a cylindrical buffer chamber. The L-HCF was utilized as the PA cavity and the light transmission media simultaneously. The optimal inner diameter of the L-HCF was 1.7 mm. The embedded acoustic resonator was experimentally proven to be equivalent to a T-type half-open acoustic resonator, but the structure became much more compact. The volume of the amount of gas in the cell was only ∼0.3 mL, and the gas diffusion time to fill the sensor under room temperature (25°C) and ambient pressure (101 kPa) was ∼44 s. Trace acetylene (C2H2) in pure nitrogen (N2) was chosen as the target gas, and the minimum detectable limit (MDL) reached 29 ppb when the lock-in integration time was 1 s. The normalized noise equivalent absorption (NNEA) coefficient was calculated to be 3.0 × 10-9 W·cm-1·Hz-1/2. The micro-resonant PA gas sensor, with merits of compactness, low gas consumption, and low cost, has the potential to be a remote gas sensing scheme in fields of environmental protection, industrial process monitoring, and so on.

2.
Sensors (Basel) ; 21(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067329

RESUMO

Dual-parameter measurements of refractive index and methane concentration based on electromagnetic Fano resonance are proposed. Two independent Fano resonances can be produced through electric dipole and toroidal dipole resonance in an all-dielectric metasurface separately. The linear relationship between the spectral peak-shifts and the parameters to be measured will be obtained directly. The refractive index (RI) sensitivity and gas sensitivity are 1305.6 nm/refractive index unit (RIU), -0.295 nm/% for one resonance peak (dip1), and 456.6 nm/RIU, -0.61 nm/% for another resonance peak (dip2). Such a metasurface has simpler structure and higher sensitivity, which is beneficial for environmental gas monitoring or multi-parameter measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA