Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
J Nanobiotechnology ; 22(1): 48, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302938

RESUMO

Inflammatory bowel disease (IBD) is closely linked to the homeostasis of the intestinal environment, and exosomes can be used to treat IBD due to their high biocompatibility and ability to be effectively absorbed by the intestinal tract. However, Ginseng-derived nanoparticles (GDNPs) have not been studied in this context and their mechanism of action remains unclear. Here, we investigated GDNPs ability to mediate intercellular communication in a complex inflammatory microenvironment in order to treat IBD. We found that GDNPs scavenge reactive oxygen species from immune cells and intestinal epithelial cells, inhibit the expression of pro-inflammatory factors, promote the proliferation and differentiation of intestinal stem cells, as well as enhancing the diversity of the intestinal flora. GDNPs significantly stabilise the intestinal barrier thereby promoting tissue repair. Overall, we proved that GDNPs can ameliorate inflammation and oxidative stress in vivo and in vitro, acting on the TLR4/MAPK and p62/Keap1/Nrf2 pathways, and exerting an anti-inflammatory and antioxidant effect. GDNPs mitigated IBD in mice by reducing inflammatory factors and improving the intestinal environment. This study offers new evidence of the potential therapeutic effects of GDNPs in the context of IBD, providing the conceptual ground for an alternative therapeutic strategy.


Assuntos
Doenças Inflamatórias Intestinais , Nanopartículas , Panax , Animais , Camundongos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Nanopartículas/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Panax/metabolismo , Receptor 4 Toll-Like/metabolismo
2.
Cell Mol Biol Lett ; 29(1): 88, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877424

RESUMO

Osteoarthritis (OA) is the most common degenerative joint disorder that causes disability in aged individuals, caused by functional and structural alterations of the knee joint. To investigate whether metabolic drivers might be harnessed to promote cartilage repair, a liquid chromatography-mass spectrometry (LC-MS) untargeted metabolomics approach was carried out to screen serum biomarkers in osteoarthritic rats. Based on the correlation analyses, α-ketoglutarate (α-KG) has been demonstrated to have antioxidant and anti-inflammatory properties in various diseases. These properties make α-KG a prime candidate for further investigation of OA. Experimental results indicate that α-KG significantly inhibited H2O2-induced cartilage cell matrix degradation and apoptosis, reduced levels of reactive oxygen species (ROS) and malondialdehyde (MDA), increased superoxide dismutase (SOD) and glutathione (GSH)/glutathione disulfide (GSSG) levels, and upregulated the expression of ETV4, SLC7A11 and GPX4. Further mechanistic studies observed that α-KG, like Ferrostatin-1 (Fer-1), effectively alleviated Erastin-induced apoptosis and ECM degradation. α-KG and Fer-1 upregulated ETV4, SLC7A11, and GPX4 at the mRNA and protein levels, decreased ferrous ion (Fe2+) accumulation, and preserved mitochondrial membrane potential (MMP) in ATDC5 cells. In vivo, α-KG treatment inhibited ferroptosis in OA rats by activating the ETV4/SLC7A11/GPX4 pathway. Thus, these findings indicate that α-KG inhibits ferroptosis via the ETV4/SLC7A11/GPX4 signaling pathway, thereby alleviating OA. These observations suggest that α-KG exhibits potential therapeutic properties for the treatment and prevention of OA, thereby having potential clinical applications in the future.


Assuntos
Ferroptose , Ácidos Cetoglutáricos , Osteoartrite , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Transdução de Sinais , Ferroptose/efeitos dos fármacos , Animais , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ratos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Masculino , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Ratos Sprague-Dawley , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
3.
J Biochem Mol Toxicol ; 37(1): e23227, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36177510

RESUMO

Clinical treatment of Osteoarthritis (OA) remains a challenge due to the poor self-regeneration ability of cartilage. Deer antler is the only cartilage tissue that can completely regenerate each year. Insulin-like growth factor 1 (IGF-1) is one of the major active components in the deer antler that participate in regulating the rapid regeneration of deer antler cartilage. This has led us to speculate that deer IGF-1 might potentially become a candidate drug for reducing damage and inflammation of OA. Thus, we aimed to explore the underlying mechanism of deer IGF-1 in chondrocyte proliferation, differentiation, and inflammation response. Deer, mouse, and human IGF-1 amino acid sequences and protein structures were aligned using CLUSTAL and PSIPRED. The underlying molecular mechanism of deer IGF-1 on primary chondrocytes was investigated by RNA-sequencing (RNA-seq) technology combined with various experiments. Cytokine interleukin-1ß (IL-1ß) was used to induce the inflammation response of primary chondrocytes. We found that deer IGF-1 was more similar to human IGF-1 than mouse IGF-1. qRT-PCR and immunofluorescence assay indicated that deer IGF-1 had stronger effects than mouse IGF-1. We also found that the deer IGF-1 enhanced the expression of cell proliferation, differentiation, and extracellular matrix (ECM)-related genes, but decreased the expression of ECM-degrading genes. Deer IGF-1 also attenuated the IL-1ß-induced inflammatory and ECM degradation in chondrocytes. This study provides insight into the molecular mechanisms of deer IGF-1 on primary chondrocyte viability and presents a candidate for combatting inflammatory responses in OA development.


Assuntos
Cervos , MicroRNAs , Osteoartrite , Animais , Humanos , Camundongos , Condrócitos/metabolismo , Interleucina-1beta/farmacologia , Interleucina-1beta/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Cervos/genética , Cervos/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Osteoartrite/metabolismo , MicroRNAs/metabolismo , Apoptose
4.
Phytother Res ; 37(8): 3583-3601, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37070654

RESUMO

Oral decoction is widely applied in traditional Chinese medicines. The polysaccharides of decoction promote the exposure of small molecules and increase their bioavailability. This study mainly compared the component and activities of total ginsenosides (TGS) and ginseng extract (GE) on immunosuppressed mice induced by cyclophosphamide. Thirty-two mice were randomly divided into control, model, TGS, and GE groups. The mice were orally administered for 28 days and then injected with cyclophosphamide on the last four days. The results of component analysis showed the total content of 12 ginsenosides in TGS (67.21%) was higher than GE (2.04%); the total content of 17 amino acids in TGS (1.41%) was lower than GE (5.36%); the total content of 10 monosaccharides was similar in TGS (74.12%) and GE (76.36%). The animal results showed that both TGS and GE protected the hematopoietic function of bone marrow by inhibiting cell apoptosis, and recovering the normal cell cycle of BM; maintained the dynamic balance between the Th1 and Th2 cells; also protected the spleen, thymus, and liver. Meanwhile, TGS and GE protected the intestinal bacteria of immunosuppressed mice by increasing the abundance of lactobacillus and decreasing the abundance of the odoribacter and clostridia_UCG-014. The prevention effect of GE was superior to TGS in some parameters. In conclusion, TGS and GE protected the immune function of immunosuppressed mice induced by cyclophosphamide. Meanwhile, GE showed higher bioavailability and bioactivity compared with TGS, because the synergistic effect of polysaccharides and ginsenosides plays an important role in protecting the immune function.


Assuntos
Ginsenosídeos , Panax , Camundongos , Animais , Ginsenosídeos/farmacologia , Panax/química , Ciclofosfamida/toxicidade , Terapia de Imunossupressão , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia
5.
Molecules ; 28(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894595

RESUMO

The genus Acorus, a perennial monocotyledonous-class herb and part of the Acoraceae family, is widely distributed in the temperate and subtropical zones of the Northern and Southern Hemispheres. Acorus is rich in biological activities and can be used to treat various diseases of the nervous system, cardiovascular system, and digestive system, including Alzheimer's disease, depression, epilepsy, hyperlipidemia, and indigestion. Recently, it has been widely used to improve eutrophic water and control heavy-metal-polluted water. Thus far, only three species of Acorus have been reported in terms of chemical components and pharmacological activities. Previously published reviews have not further distinguished or comprehensively expounded the chemical components and pharmacological activities of Acorus plants. By carrying out a literature search, we collected documents closely related to Acorus published from 1956 to 2022. We then performed a comprehensive and systematic review of the genus Acorus from different perspectives, including botanical aspects, ethnic applications, phytochemistry aspects, and pharmacological aspects. Our aim was to provide a basis for further research and the development of new concepts.


Assuntos
Acorus , Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Anisóis/farmacologia , Água , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Etnofarmacologia
6.
Biochem Genet ; 60(2): 676-706, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34410558

RESUMO

Cartilage is a resilient and smooth connective tissue that is found throughout the body. Among the three major types of cartilage, namely hyaline cartilage, elastic cartilage, and fibrocartilage, hyaline cartilage is the most widespread type of cartilage predominantly located in the joint surfaces (articular cartilage, AC). It remains a huge challenge for orthopedic surgeons to deal with AC damage since it has limited capacity for self-repair. Xiphoid cartilage (XC) is a vestigial cartilage located in the distal end of the sternum. XC-derived chondrocytes exhibit strong chondrogenic differentiation capacity. Thus, XC could become a potential donor site of chondrocytes for cartilage repair and regeneration. However, the underlying gene expression patterns between AC and XC are still largely unknown. In the present study, we used state-of-the-art RNA-seq technology combined with validation method to investigate the gene expression patterns between AC and XC, and identified a series of differentially expressed genes (DEGs) involved in chondrocyte commitment and differentiation including growth factors, transcription factors, and extracellular matrices. We demonstrated that the majority of significantly up-regulated DEGs (XC vs. AC) in XC were involved in regulating cartilage regeneration and repair, whereas the majority of significantly up-regulated DEGs (XC vs. AC) in AC were involved in regulating chondrocyte differentiation and maturation. This study has increased our knowledge of transcriptional networks in hyaline cartilage and elastic cartilage. It also supports the use of XC-derived chondrocytes as a potential cell resource for cartilage regeneration and repair.


Assuntos
Cartilagem Articular , Diferenciação Celular/genética , Condrócitos/metabolismo , Condrogênese , Expressão Gênica , Esterno
7.
Phytother Res ; 36(2): 857-872, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35026867

RESUMO

Vascular dysfunction can lead to a variety of fatal diseases, including cardiovascular and cerebrovascular diseases, metabolic syndrome, and cancer. Although a large number of studies have reported the therapeutic effects of natural compounds on vascular-related diseases, ginseng is still the focus of research. Ginseng and its active substances have bioactive effects against different diseases with vascular dysfunction. In this review, we summarized the key molecular mechanisms and signaling pathways of ginseng, its different active ingredients or formula in the prevention and treatment of vascular-related diseases, including cardiac-cerebral vascular diseases, hypertension, diabetes complications, and cancer. Moreover, the bidirectional roles of ginseng in promoting or inhibiting angiogenesis have been highlighted. We systematically teased out the relationship between ginseng and vascular dysfunction, which could provide a basis for the clinical application of ginseng in the future.


Assuntos
Hipertensão , Panax , Humanos , Hipertensão/tratamento farmacológico , Transdução de Sinais
8.
Molecules ; 27(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36431966

RESUMO

Cervical cancer is a common gynecological malignancy afflicting women all over the world. Ginsenoside Rh2 (GRh2), especially 20(S)-GRh2, is a biologically active component in the natural plant ginseng, which can exhibit anticancer effects. Here, we aimed to investigate the effect of 20(S)-GRh2 on cervical cancer and elucidate the underlying mechanism through RNA-seq. In this study, the CCK-8 assay showed that 20(S)-GRh2 inhibited HeLa cell viability in a time- and dose-dependent manner. Caspase 3 activity and Annexin V staining results showed that 20(S)-GRh2 induced apoptosis of HeLa cells. Gene function enrichment analysis revealed that the biological process gene ontology (GO) terms were associated with the apoptotic signaling pathway. Biological process GO terms' similarity network indicated that apoptosis might be from endoplasmic reticulum stress (ERs). Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that 20(S)-GRh2 primarily modulates apoptosis pathway genes. Combined protein-protein interaction network, hub gene screening, and qPCR validation data showed that ERs-related genes (ATF4 and DDIT3) and the downstream apoptotic genes (JUN, FOS, BBC3, and PMAIP1) were potential novel targets of 20(S)-GRh2-inducing cervical cancer cell apoptosis. Differential transcript usage analysis indicated that DDIT3 is also a differential transcript and its usage of the isoform (ENST00000552740.5) was reduced by 20(S)-GRh2. Molecular docking suggested that 20(S)-GRh2 binds to the targets (ATF4, DDIT3, JUN, FOS, BBC3, and PMAIP1) with high affinity. In conclusion, our findings indicated that 20(S)-GRh2 might promote ERs-related apoptosis of cervical cancer cells by regulating the DDIT3-based targets' signal pathway. The role of 20(S)-GRh2 at the transcriptome level provides novel targets and evidence for the treatment of cervical cancer.


Assuntos
Estresse do Retículo Endoplasmático , Neoplasias do Colo do Útero , Feminino , Humanos , Células HeLa , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Simulação de Acoplamento Molecular , Apoptose , Proteínas Reguladoras de Apoptose , Expressão Gênica
9.
Molecules ; 27(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35889520

RESUMO

Mannosylerythritol lipids (MELs) may prevent skin barrier damage, although their protective mechanisms and active monomeric constituents remain unclear. Here, three MELs were extracted from Candida antarctica cultures containing fermented olive oil then purified using silica gel-based column chromatography and semipreparative HPLC. All three compounds (MEL-A, MEL-B, MEL-C) were well separated and stable, and reliable materials were used for NMR and HRESIMS chemical structure determinations and for assessing MELs' protective effects against skin damage. Notably, MEL-B and MEL-C effectively protected HaCaT cells from UVB-induced damage by upregulating the contents of filaggrin (FLG) and transglutaminase-1 (TGM1), as determined via ELISA. Moreover, MEL-B treatment (20 µg/mL) of UVB-irradiated HaCaT cells led to the upregulation of both the expression of mRNA genes and the key proteins FLG, LOR, and TGM1, which are known to be decreased in damaged skin cells. Additionally, histopathological analysis results revealed a markedly reduced intracellular vacuolation and cell damage, reflecting improved skin function after MEL-B treatment. Furthermore, immunofluorescence results revealed that MEL-B protected EpiKutis® three-dimensional cultured human skin cells from sodium dodecyl sulfate-induced damage by up-regulating FLG, LOR, and TGM1 expression. Accordingly, MELs' protection against skin barrier damage depended on MEL-B monomeric constituent activities, thus highlighting their promise as beneficial ingredients for use in skin-care products.


Assuntos
Ustilaginales , Células Cultivadas , Glicolipídeos/química , Humanos , Pele , Dodecilsulfato de Sódio/farmacologia , Tensoativos/química , Ustilaginales/química , Ustilaginales/genética , Ustilaginales/metabolismo
10.
J Am Chem Soc ; 143(3): 1416-1427, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33439015

RESUMO

Targeting SIRT1 signaling pathway could improve glucose aerobic metabolism and mitochondrial biosynthesis to resist cardiac and neurological injuries. Ginsenoside Rc has been identified for targeting mitochondrial function, but how ginsenoside Rc interacts with SIRT1 to regulate energy metabolism in cardiomyocytes and neurons under physiological or ischemia/reperfusion (I/R)-injured conditions has not been clearly investigated. Here, we confirm the interaction of Rc on the residue sites of SIRT1 in promoting its activity. Ginsenoside Rc significantly promotes mitochondrial biogenesis and increases the levels of electron-transport chain complex II-IV in cardiomyocytes and neurons. Meanwhile, ginsenoside Rc pretreatment increases ATP production, glucose uptake, and the levels of hexokinase I/II and mitochondrial pyruvate carrier I/II in both cell models. In addition, ginsenoside Rc activates the PGC1α pathway to induce mitochondrial biosynthesis. More importantly, ginsenoside Rc reduces mitochondrial damage and apoptosis through SIRT1 restoration-mediated reduction of PGC1α acetylation in the I/R-induced cardiac and neuronal models. Collectively, the in vitro and in vivo data indicate that ginsenoside Rc as a SIRT1 activator promotes energy metabolism to improve cardio- and neuroprotective functions under normal and I/R injury conditions, which provides new insights into the molecular mechanism of ginsenoside Rc as a protective agent.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Ginsenosídeos/uso terapêutico , Miócitos Cardíacos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Sirtuína 1/metabolismo , Animais , Encéfalo/patologia , Glucose/metabolismo , Masculino , Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Neurônios/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Células PC12 , Ácido Pirúvico/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
11.
Wound Repair Regen ; 29(6): 1006-1016, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34448508

RESUMO

Prolonged skin exposure to ultraviolet radiation can lead to development of several acute and chronic diseases, with UVA exposure considered a primary cause of dermal photodamage. We prepared a wild ginseng adventitious root extract (ARE) that could alleviate UVA irradiation-induced NIH-3T3 cell viability decline. After employing a series of purification methods to isolate main active components of ARE, adventitious root protein mixture (ARP) was identified then tested for protective effects against UVA irradiation-induced NIH-3T3 cell damage. The results showed that ARP treatment significantly reduced UVA-induced cell viability decline and confirmed that the active constituent of ARP was the protein, since proteolytic hydrolysis and heat treatment each eliminated ARP protective activity. Moreover, ARP treatment markedly inhibited UVA-induced apoptosis, cell cycle arrest and DNA fragmentation, while also significantly reversing UVA effects (elevated Bax levels, reduced Bcl-2 expression) by reducing Bax levels and increasing Bcl-2 expression. Mechanistically, ARP promoted Akt phosphorylation regardless of UVA exposure, thus confirming ARP resistance to inactivation by UVA light. Notably, in the presence of Akt inhibitor SC0227, ARP could no longer counteract UVA-induced cell viability decline and DNA fragmentation. Additionally, our results demonstrated that ARP treatment protected UVA-irradiated NIH-3T3 cells by preventing UVA-induced reduction of collagen-I expression. Taken together, these results suggest that ARP treatment of NIH-3T3 cells effectively mitigated UVA-induced cell viability decline by activating intracellular Akt to reduce UVA-induced DNA damage, leading to reduced rates of apoptosis and cell cycle arrest after UVA exposure and restoring collagen expression to normal levels.


Assuntos
Panax , Raios Ultravioleta , Animais , Apoptose , Camundongos , Células NIH 3T3 , Proteínas Proto-Oncogênicas c-akt , Raios Ultravioleta/efeitos adversos , Cicatrização
12.
Mol Biol Rep ; 48(11): 7487-7497, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34651294

RESUMO

BACKGROUND: Chondrocyte proliferation and differentiation play pivotal roles in regulating cartilage formation, endochondral bone formation, and repair. Cartilage damage and underdevelopment may cause severe joint diseases. Various transcription factors regulate cartilage development. Nuclear factor 1 B (Nfib) is a transcription factor that plays a regulatory role in various organs. However, the effect and mechanism of Nfib on the proliferation and differentiation of chondrocytes in cartilage are still largely unknown. METHODS AND RESULTS: In the present study, we investigated the gene expression patterns in primary chondrocytes with Nfib overexpression or silencing by RNA sequencing (RNA-seq) technology. The results showed that Nfib overexpression significantly up-regulated genes that are related to chondrocyte proliferation and extracellular matrix (ECM) synthesis and significantly down-regulated genes related to chondrocyte differentiation and ECM degradation. However, with Nfib silencing, the genes involved in promoting chondrocyte differentiation were significantly up-regulated, whereas those involved in promoting chondrocyte proliferation were significantly down-regulated. Furthermore, quantitative real-time PCR (qRT-PCR), western blot, alcian blue staining and immunofluorescence staining assays further confirmed that Nfib potentially promotes chondrocyte proliferation and extracellular synthesis but inhibits differentiation. CONCLUSIONS: The molecular mechanism of Nfib in promoting chondrocyte proliferation and inhibiting differentiation was probably achieved by stimulating Sox9 and its downstream genes. Thus, this study adds new insights regarding the underlying molecular mechanism of transcriptional regulation in cartilage.


Assuntos
Proliferação de Células , Condrócitos/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição NFI/metabolismo , Fatores de Transcrição SOX9/metabolismo , Animais , Camundongos , Fatores de Transcrição NFI/genética , Fatores de Transcrição SOX9/genética
13.
Cell Mol Biol Lett ; 26(1): 42, 2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34602061

RESUMO

BACKGROUND: Keratinocytes and fibroblasts represent the major cell types in the epidermis and dermis of the skin and play a significant role in maintenance of skin homeostasis. However, the biological characteristics of keratinocytes and fibroblasts remain to be elucidated. The purpose of this study was to compare the gene expression pattern between keratinocytes and fibroblasts and to explore novel biomarker genes so as to provide potential therapeutic targets for skin-related diseases such as burns, wounds, and aging. METHODS: Skin keratinocytes and fibroblasts were isolated from newborn mice. To fully understand the heterogeneity of gene expression between keratinocytes and fibroblasts, differentially expressed genes (DEGs) between the two cell types were detected by RNA-seq technology. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the known genes of keratinocytes and fibroblasts and verify the RNA-seq results. RESULTS: Transcriptomic data showed a total of 4309 DEGs (fold-change > 1.5 and q-value < 0.05). Among them, 2197 genes were highly expressed in fibroblasts and included 10 genes encoding collagen, 16 genes encoding transcription factors, and 14 genes encoding growth factors. Simultaneously, 2112 genes were highly expressed in keratinocytes and included 7 genes encoding collagen, 14 genes encoding transcription factors, and 8 genes encoding growth factors. Furthermore, we summarized 279 genes specifically expressed in keratinocytes and 33 genes specifically expressed in fibroblasts, which may represent distinct molecular signatures of each cell type. Additionally, we observed some novel specific biomarkers for fibroblasts such as Plac8 (placenta-specific 8), Agtr2 (angiotensin II receptor, type 2), Serping1 (serpin peptidase inhibitor, clade G, member 1), Ly6c1 (lymphocyte antigen 6 complex, locus C1), Dpt (dermatopontin), and some novel specific biomarkers for keratinocytes such as Ly6a (lymphocyte antigen 6 complex, locus A) and Lce3c (late cornified envelope 3C), Ccer2 (coiled-coil glutamate-rich protein 2), Col18a1 (collagen, type XVIII, alpha 1) and Col17a1 (collagen type XVII, alpha 1). In summary, these data provided novel identifying biomarkers for two cell types, which can provide a resource of DEGs for further investigations.


Assuntos
Biomarcadores/metabolismo , Fibroblastos/metabolismo , Queratinócitos/metabolismo , Dermatopatias/metabolismo , Pele/metabolismo , Animais , Autoantígenos/metabolismo , Células Cultivadas , Masculino , Camundongos , Colágenos não Fibrilares/metabolismo , Análise de Sequência de RNA/métodos , Colágeno Tipo XVII
14.
Biosci Biotechnol Biochem ; 86(1): 92-103, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34718401

RESUMO

20(S)-Ginsenoside Rh2 (GRh2) has various biological activities including anticancer effects. However, no reports have investigated the connection between autophagy and apoptosis in HeLa cells treated with 20(S)-GRh2. In this study, we found that 20(S)-GRh2 suppressed proliferation and induced apoptosis in HeLa cells by activating the intrinsic apoptotic pathway and causing mitochondrial dysfunction. 20(S)-GRh2 enhanced cell autophagy through promoting the phosphorylation of AMPK, depressed the phosphorylation of AKT, and suppressed mTOR activity. Furthermore, treatment with the autophagy inhibitor 3-methyladenine (3-MA) enhanced 20(S)-GRh2-induced apoptosis, while the autophagy inducer rapamycin promoted cell survival. Moreover, the apoptosis inhibitor Z-VAD-FMK significantly restrained the apoptosis and autophagy induced by 20(S)-GRh2 in HeLa cells. We found that 20(S)-ginsenoside Rh2-induced protective autophagy promotes apoptosis of cervical cancer cells by inhibiting AMPK/mTOR pathway.


Assuntos
Ginsenosídeos
15.
Biosci Biotechnol Biochem ; 85(5): 1097-1103, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33784737

RESUMO

p62/sequestosome is a multifunctional adaptor protein that participates in a wide variety of cellular processes. 20(S)-Ginsenoside Rh2 (G-Rh2) has various biological effects, including anticancer activity. We found that G-Rh2 can induce apoptosis and autophagy in HeLa cells. G-Rh2 significantly enhanced the transcriptional level of p62. A siRNA was constructed to knock down p62 and assess its effect on apoptosis induced by G-Rh2. p62 protein levels were successfully downregulated in cells transfected with the p62-specific siRNA. Silencing of p62 further decreased cell viability while also enhancing cell apoptosis, reactive oxygen species generation, the ratio of Bax to Bcl-2, and the cleavage of PARP. p62 knockdown decreased expression levels of Nrf2. Moreover, silencing of p62 had no significant effect on autophagy induced by G-Rh2. These results suggest that combining G-Rh2 treatment with inhibition of p62 may be a potential treatment strategy for cervical cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ginsenosídeos/farmacologia , Proteína Sequestossoma-1/genética , Apoptose/genética , Autofagia , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Proteína Sequestossoma-1/antagonistas & inibidores , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
16.
Molecules ; 26(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34443587

RESUMO

Panax spp. (Araliaceae family) are widely used medicinal plants and they mainly include Panax ginseng C.A. Meyer, Panax quinquefolium L. (American ginseng), and Panax notoginseng (notoginseng). Polysaccharides are the main active ingredients in these plants and have demonstrated diverse pharmacological functions, but comparisons of isolation methods, structural features, and bioactivities of these polysaccharides have not yet been reported. This review summarizes recent advances associated with 112 polysaccharides from ginseng, 25 polysaccharides from American ginseng, and 36 polysaccharides from notoginseng and it compares the differences in extraction, purification, structural features, and bioactivities. Most studies focus on ginseng polysaccharides and comparisons are typically made with the polysaccharides from American ginseng and notoginseng. For the extraction, purification, and structural analysis, the processes are similar for the polysaccharides from the three Panax species. Previous studies determined that 55 polysaccharides from ginseng, 18 polysaccharides from American ginseng, and 9 polysaccharides from notoginseng exhibited anti-tumor activity, immunoregulatory effects, anti-oxidant activity, and other pharmacological functions, which are mediated by multiple signaling pathways, including mitogen-activated protein kinase, nuclear factor kappa B, or redox balance pathways. This review can provide new insights into the similarities and differences among the polysaccharides from the three Panax species, which can facilitate and guide further studies to explore the medicinal properties of the Araliaceae family used in traditional Chinese medicine.


Assuntos
Fracionamento Químico/métodos , Panax/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Animais , Humanos , Polissacarídeos/isolamento & purificação
17.
Molecules ; 26(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199646

RESUMO

Wild ginseng (W-GS), ginseng under forest (F-GS, planted in mountain forest and growing in natural environment), and cultivated ginseng (C-GS) were compared via HPLC-DAD and HPLC-IT-TOF-MSn. A total of 199 saponins, including 16 potential new compounds, were tentatively identified from 100 mg W-GS (177 saponins in W-GS with 11 new compounds), F-GS (56 saponins with 1 new compound), and C-GS (60 saponins with 6 new compounds). There were 21 saponins detected from all the W-GS, F-GS, and C-GS. Fifty saponins were only detected from W-GS, including 23 saponins found in ginseng for the first time. Contents of ginsenosides Re (12.36-13.91 mg/g), Rh1 (7.46-7.65 mg/g), Rd (12.94-12.98 mg/g), and the total contents (50.52-55.51 mg/g) of Rg1, Re, Rf, Rb1, Rg2, Rh1, and Rd in W-GS were remarkably higher than those in F-GS (Re 1.22-3.50 mg/g, Rh1 0.15-1.49 mg/g, Rd 0.19-1.49 mg/g, total 5.69-18.74 mg/g), and C-GS (Re 0.30-3.45 mg/g, Rh1 0.05-3.42 mg/g, Rd 0.17-1.68 mg/g, total 2.99-19.55 mg/g). Contents of Re and Rf were significantly higher in F-GS than those in C-GS (p < 0.05). Using the contents of Re, Rf, or Rb1, approximately a half number of cultivated ginseng samples could be identified from ginseng under forest. Contents of Rg1, Re, Rg2, Rh1, as well as the total contents of the seven ginsenosides were highest in ginseng older than 15 years, middle-high in ginseng between 10 to 15 years old, and lowest in ginseng younger than 10 years. Contents of Rg1, Re, Rf, Rb1, Rg2, and the total of seven ginsenosides were significantly related to the growing ages of ginseng (p < 0.10). Similarities of chromatographic fingerprints to W-GS were significantly higher (p < 0.05) for F-GS (median: 0.824) than C-GS (median: 0.745). A characteristic peak pattern in fingerprint was also discovered for distinguishing three types of ginseng. Conclusively, wild ginseng was remarkably superior to ginseng under forest and cultivated ginseng, with ginseng under forest slightly closer to wild ginseng than cultivated ginseng. The differences among wild ginseng, ginseng under forest, and cultivated ginseng in saponin compositions and contents of ginsenosides were mainly attributed to their growing ages.


Assuntos
Panax/crescimento & desenvolvimento , Saponinas/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Florestas , Estrutura Molecular , Panax/química , Panax/classificação , Saponinas/química
18.
Mol Biol Rep ; 47(8): 5773-5792, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32661874

RESUMO

Chondrocytes are the sole cell type present within cartilage, and play pivotal roles in controlling the formation and composition of health cartilage. Chondrocytes maintain cartilage homeostasis through proliferating, differentiating and synthesizing different types of extracellular matrices. Thus, the coordinated proliferation and differentiation of chondrocytes are essential for cartilage growth, repair and the conversion from cartilage to bone during the processes of bone formation and fracture healing. Runx3, a transcription factor that belongs to the Runx family, is significantly upregulated at the onset of cartilage mineralization and regulates both early and late markers of chondrocyte maturation. Therefore, Runx3 may serve as an accelerator of chondrocyte differentiation and maturation. However, the underlying molecular mechanism of Runx3 in regulating chondrocyte proliferation and differentiation remains largely to be elucidated. In the present study, we used state-of-the-art RNA-seq technology combined with validation methods to investigate the effect of Runx3 overexpression or silencing on primary chondrocyte proliferation and differentiation, and demonstrated that Runx3 overexpression possibly inhibited chondrocyte proliferation but accelerated differentiation, whereas Runx3 silencing possibly promoted chondrocyte proliferation but suppressed differentiation. Furthermore, Runx3 overexpression possibly decreased the expression levels of Sox9 and its downstream genes via Sox9 cartilage-specific enhancers, and vice versa for Runx3 silencing.


Assuntos
Osso e Ossos/fisiologia , Cartilagem/fisiologia , Condrócitos/fisiologia , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Animais , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Cartilagem/citologia , Cartilagem/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Biologia Computacional/métodos , Camundongos , Fenótipo , Análise de Sequência de RNA/métodos
19.
Cell Mol Biol Lett ; 25: 42, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944020

RESUMO

BACKGROUND: Deer antlers have become a valuable model for biomedical research due to the capacities of regeneration and rapid growth. However, the molecular mechanism of rapid antler growth remains to be elucidated. The aim of the present study was to compare and explore the molecular control exerted by the main beam and brow tine during rapid antler growth. METHODS: The main beams and brow tines of sika deer antlers were collected from Chinese sika deer (Cervus nippon) at the rapid growth stage. Comparative transcriptome analysis was conducted using RNA-Seq technology. Differential expression was assessed using the DEGseq package. Functional Gene Ontology (GO) enrichment analysis was accomplished using a rigorous algorithm according to the GO Term Finder tool, and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis was accomplished with the R function phyper, followed by the hypergeometric test and Bonferroni correction. Quantitative real-time polymerase chain reaction (qRT-PCR) was carried out to verify the RNA levels for differentially expressed mRNAs. RESULTS: The expression levels of 16 differentially expressed genes (DEGs) involved in chondrogenesis and cartilage development were identified as significantly upregulated in the main beams, including transcription factor SOX-9 (Sox9), collagen alpha-1(II) chain (Col2a1), aggrecan core protein (Acan), etc. However, the expression levels of 17 DEGs involved in endochondral ossification and bone formation were identified as significantly upregulated in the brow tines, including collagen alpha-1(X) chain (Col10a1), osteopontin (Spp1) and bone sialoprotein 2 (Ibsp), etc. CONCLUSION: These results suggest that the antler main beam has stronger growth capacity involved in chondrogenesis and cartilage development compared to the brow tine during rapid antler growth, which is mainly achieved through regulation of Sox9 and its target genes, whereas the antler brow tine has stronger capacities of endochondral bone formation and resorption compared to the main beam during rapid antler growth, which is mainly achieved through the genes involved in regulating osteoblast and osteoclast activities. Thus, the current research has deeply expanded our understanding of the intrinsic molecular regulation displayed by the main beam and brow tine during rapid antler growth.


Assuntos
Chifres de Veado/crescimento & desenvolvimento , Cervos/genética , Transcriptoma/genética , Animais , Condrogênese/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Ontologia Genética , Genoma/genética , Osteogênese/genética , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos
20.
Mol Biol Rep ; 46(2): 1635-1648, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30680597

RESUMO

Deer antlers are unique cranial appendages capable of regeneration and rapid growth. In addition, deer antlers have been widely used in traditional Chinese medicine to promote the function of the kidneys, reproductive system, bones and nervous system. It has been shown that water-soluble substances are the major bioactive components within the deer antlers. In this study, we prepared aqueous extracts from deer antlers during a rapid growth stage. We investigated the effects of antler extracts on primary chondrocytes by analyzing their protein expression patterns using isobaric tags for relative and absolute quantitation technology. We demonstrated that antler extracts promote chondrocyte proliferation and prevent chondrocyte differentiation and apoptosis by controlling multiple cellular processes involved in genomic stability, epigenetic alterations, ribosome biogenesis, protein synthesis and cytoskeletal reorganization. Antler extracts significantly increased the expression levels of proliferation markers Mki67 and Stmn1 and differentiation inhibitor Acp5 as well as cellular apoptosis inhibitors Ndufa4l2 and Rcn1. Thus, this study has greatly expanded our current knowledge of the molecular effects of antler extracts on chondrocytes. It has also shed new light on possible strategies to prevent damage to and to treat cartilage and its related diseases by using aqueous extracts from growing Sika deer antlers.


Assuntos
Chifres de Veado/crescimento & desenvolvimento , Condrócitos/efeitos dos fármacos , Extratos de Tecidos/farmacologia , Animais , Chifres de Veado/química , Chifres de Veado/metabolismo , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , China , Condrócitos/fisiologia , Condrogênese/efeitos dos fármacos , Cervos , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA