Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Invest ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207863

RESUMO

Intestinal dysmotility syndromes have been epidemiologically associated with several antecedent bacterial and viral infections. To model this phenotype, we previously infected mice with the neurotropic flavivirus, West Nile Virus (WNV) and demonstrated intestinal transit defects. Here, we find that within one week of WNV infection, enteric neurons and glia become damaged, resulting in sustained reductions of neuronal cells and their networks of connecting fibers. Using cell-depleting antibodies, adoptive transfer experiments, and mice lacking specific immune cells or immune functions, we show that infiltrating WNV-specific CD4+ and CD8+ T cells damage the enteric nervous system (ENS) and glia, which leads to intestinal dysmotility; these T cells use multiple and redundant effector functions including perforin and Fas ligand. In comparison, WNV-triggered ENS injury and intestinal dysmotility appears to not require infiltrating monocytes and damage may be limited by resident muscularis macrophages. Overall, our experiments support a model whereby antigen specific T cell subsets and their effector molecules responding to WNV infection direct immune pathology against enteric neurons and supporting glia that results in intestinal dysmotility.

2.
J Exp Med ; 221(9)2024 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-39042188

RESUMO

The contribution of placental immune responses to congenital Zika virus (ZIKV) syndrome remains poorly understood. Here, we leveraged a mouse model of ZIKV infection to identify mechanisms of innate immune restriction exclusively in the fetal compartment of the placenta. ZIKV principally infected mononuclear trophoblasts in the junctional zone, which was limited by mitochondrial antiviral-signaling protein (MAVS) and type I interferon (IFN) signaling mechanisms. Single nuclear RNA sequencing revealed MAVS-dependent expression of IFN-stimulated genes (ISGs) in spongiotrophoblasts but not in other placental cells that use alternate pathways to induce ISGs. ZIKV infection of Ifnar1-/- or Mavs-/- placentas was associated with greater infection of the adjacent immunocompetent decidua, and heterozygous Mavs+/- or Ifnar1+/- dams carrying immunodeficient fetuses sustained greater maternal viremia and tissue infection than dams carrying wild-type fetuses. Thus, MAVS-IFN signaling in the fetus restricts ZIKV infection in junctional zone trophoblasts, which modulates dissemination and outcome for both the fetus and the pregnant mother.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Decídua , Feto , Interferon Tipo I , Placenta , Receptor de Interferon alfa e beta , Transdução de Sinais , Trofoblastos , Infecção por Zika virus , Zika virus , Feminino , Animais , Gravidez , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Transdução de Sinais/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Placenta/imunologia , Placenta/virologia , Placenta/metabolismo , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia , Zika virus/imunologia , Zika virus/fisiologia , Camundongos , Decídua/imunologia , Decídua/virologia , Decídua/metabolismo , Feto/imunologia , Feto/virologia , Trofoblastos/imunologia , Trofoblastos/virologia , Trofoblastos/metabolismo , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Imunidade Inata , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/virologia , Modelos Animais de Doenças
3.
Nat Commun ; 15(1): 4696, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824133

RESUMO

Age-related microangiopathy, also known as small vessel disease (SVD), causes damage to the brain, retina, liver, and kidney. Based on the DNA damage theory of aging, we reasoned that genomic instability may underlie an SVD caused by dominant C-terminal variants in TREX1, the most abundant 3'-5' DNA exonuclease in mammals. C-terminal TREX1 variants cause an adult-onset SVD known as retinal vasculopathy with cerebral leukoencephalopathy (RVCL or RVCL-S). In RVCL, an aberrant, C-terminally truncated TREX1 mislocalizes to the nucleus due to deletion of its ER-anchoring domain. Since RVCL pathology mimics that of radiation injury, we reasoned that nuclear TREX1 would cause DNA damage. Here, we show that RVCL-associated TREX1 variants trigger DNA damage in humans, mice, and Drosophila, and that cells expressing RVCL mutant TREX1 are more vulnerable to DNA damage induced by chemotherapy and cytokines that up-regulate TREX1, leading to depletion of TREX1-high cells in RVCL mice. RVCL-associated TREX1 mutants inhibit homology-directed repair (HDR), causing DNA deletions and vulnerablility to PARP inhibitors. In women with RVCL, we observe early-onset breast cancer, similar to patients with BRCA1/2 variants. Our results provide a mechanistic basis linking aberrant TREX1 activity to the DNA damage theory of aging, premature senescence, and microvascular disease.


Assuntos
Dano ao DNA , Exodesoxirribonucleases , Fosfoproteínas , Animais , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Camundongos , Reparo de DNA por Recombinação , Fenótipo , Mutação , Drosophila/genética , Envelhecimento/genética , Envelhecimento/metabolismo , Feminino , Drosophila melanogaster/genética , Masculino , Doenças Retinianas , Doenças Vasculares , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central
4.
Nat Commun ; 14(1): 5973, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749080

RESUMO

The determinants of severe disease caused by West Nile virus (WNV) and why only ~1% of individuals progress to encephalitis remain poorly understood. Here, we use human and mouse enteroids, and a mouse model of pathogenesis, to explore the capacity of WNV to directly infect gastrointestinal (GI) tract cells and contribute to disease severity. At baseline, WNV poorly infects human and mouse enteroid cultures and enterocytes in mice. However, when STAT1 or type I interferon (IFN) responses are absent, GI tract cells become infected, and this is associated with augmented GI tract and blood-brain barrier (BBB) permeability, accumulation of gut-derived molecules in the brain, and more severe WNV disease. The increased gut permeability requires TNF-α signaling, and is absent in WNV-infected IFN-deficient germ-free mice. To link these findings to human disease, we measured auto-antibodies against type I IFNs in serum from WNV-infected human cohorts. A greater frequency of auto- and neutralizing antibodies against IFN-α2 or IFN-ω is present in patients with severe WNV infection, whereas virtually no asymptomatic WNV-infected subjects have such antibodies (odds ratio 24 [95% confidence interval: 3.0 - 192.5; P = 0.003]). Overall, our experiments establish that blockade of type I IFN signaling extends WNV tropism to enterocytes, which correlates with increased gut and BBB permeability, and more severe disease.


Assuntos
Interferon Tipo I , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Animais , Camundongos , Encéfalo , Anticorpos Neutralizantes
5.
JCI Insight ; 7(17)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36073546

RESUMO

STING gain-of-function mutations cause STING-associated vasculopathy with onset in infancy (SAVI) in humans, a disease characterized by spontaneous lung inflammation and fibrosis. Mice with STING gain-of-function mutations (SAVI mice) develop αß T cell-dependent lung disease and also lack lymph nodes. Although SAVI has been regarded as a type I interferonopathy, the relative contributions of the three interferon receptors are incompletely understood. Here, we show that STING gain of function led to upregulation of IFN-γ-induced chemokines in the lungs of SAVI mice and that deletion of the type II IFN receptor (IFNGR1), but not the type I IFN receptor (IFNAR1) or type III IFN receptor (IFNλR1), ameliorated lung disease and restored lymph node development in SAVI mice. Furthermore, deletion of IFNGR1, but not IFNAR1 or IFNλR1, corrected the ratio of effector to Tregs in SAVI mice and in mixed bone marrow chimeric mice. Finally, cultured SAVI mouse macrophages were hyperresponsive to IFN-γ, but not IFN-ß, in terms of Cxcl9 upregulation and cell activation. These results demonstrate that IFNGR1 plays a major role in autoinflammation and immune dysregulation mediated by STING gain of function.


Assuntos
Pneumopatias , Doenças Vasculares , Animais , Mutação com Ganho de Função , Humanos , Pulmão , Proteínas de Membrana/genética , Camundongos , Linfócitos T , Doenças Vasculares/genética
6.
Cell Rep Med ; 3(6): 100653, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35688161

RESUMO

Individuals with primary antibody deficiency (PAD) syndromes have poor humoral immune responses requiring immunoglobulin replacement therapy. We followed individuals with PAD after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination by evaluating their immunoglobulin replacement products and serum for anti-spike binding, Fcγ receptor (FcγR) binding, and neutralizing activities. The immunoglobulin replacement products tested have low anti-spike and receptor-binding domain (RBD) titers and neutralizing activity. In coronavirus disease 2019 (COVID-19)-naive individuals with PAD, anti-spike and RBD titers increase after mRNA vaccination but wane by 90 days. Those vaccinated after SARS-CoV-2 infection develop higher and more sustained responses comparable with healthy donors. Most vaccinated individuals with PAD have serum-neutralizing antibody titers above an estimated correlate of protection against ancestral SARS-CoV-2 and Delta virus but not against Omicron virus, although this is improved by boosting. Thus, some immunoglobulin replacement products likely have limited protective activity, and immunization and boosting of individuals with PAD with mRNA vaccines should confer at least short-term immunity against SARS-CoV-2 variants, including Omicron.


Assuntos
COVID-19 , Síndromes de Imunodeficiência , Vacinas Virais , Formação de Anticorpos , COVID-19/prevenção & controle , Humanos , SARS-CoV-2/genética , Vacinas Sintéticas , Vacinas Virais/genética , Vacinas de mRNA
7.
Front Immunol ; 13: 1033770, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618402

RESUMO

Background: Although SARS-CoV-2 vaccines have proven effective in eliciting a protective immune response in healthy individuals, their ability to induce a durable immune response in immunocompromised individuals remains poorly understood. Primary antibody deficiency (PAD) syndromes are among the most common primary immunodeficiency disorders in adults and are characterized by hypogammaglobulinemia and impaired ability to mount robust antibody responses following infection or vaccination. Methods: Here, we present an analysis of both the B and T cell response in a prospective cohort of 30 individuals with PAD up to 150 days following initial COVID-19 vaccination and 150 days post mRNA booster vaccination. Results: After the primary vaccination series, many of the individuals with PAD syndromes mounted SARS-CoV-2 specific memory B and CD4+ T cell responses that overall were comparable to healthy individuals. Nonetheless, individuals with PAD syndromes had reduced IgG1+ and CD11c+ memory B cell responses following the primary vaccination series, with the defect in IgG1 class-switching rescued following mRNA booster doses. Boosting also elicited an increase in the SARS-CoV-2-specific B and T cell response and the development of Omicron-specific memory B cells in COVID-19-naïve PAD patients. Individuals that lacked detectable B cell responses following primary vaccination did not benefit from booster vaccination. Conclusion: Together, these data indicate that SARS-CoV-2 vaccines elicit memory B and T cells in most PAD patients and highlights the importance of booster vaccination in immunodeficient individuals.


Assuntos
COVID-19 , Doenças da Imunodeficiência Primária , Adulto , Humanos , Imunoglobulina G , Células B de Memória , Vacinas contra COVID-19 , SARS-CoV-2 , Estudos Prospectivos , COVID-19/prevenção & controle , RNA Mensageiro , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA