Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
J Transl Med ; 22(1): 383, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659028

RESUMO

BACKGROUND: Loss of AZGP1 expression is a biomarker associated with progression to castration resistance, development of metastasis, and poor disease-specific survival in prostate cancer. However, high expression of AZGP1 cells in prostate cancer has been reported to increase proliferation and invasion. The exact role of AZGP1 in prostate cancer progression remains elusive. METHOD: AZGP1 knockout and overexpressing prostate cancer cells were generated using a lentiviral system. The effects of AZGP1 under- or over-expression in prostate cancer cells were evaluated by in vitro cell proliferation, migration, and invasion assays. Heterozygous AZGP1± mice were obtained from European Mouse Mutant Archive (EMMA), and prostate tissues from homozygous knockout male mice were collected at 2, 6 and 10 months for histological analysis. In vivo xenografts generated from AZGP1 under- or over-expressing prostate cancer cells were used to determine the role of AZGP1 in prostate cancer tumor growth, and subsequent proteomics analysis was conducted to elucidate the mechanisms of AZGP1 action in prostate cancer progression. AZGP1 expression and microvessel density were measured in human prostate cancer samples on a tissue microarray of 215 independent patient samples. RESULT: Neither the knockout nor overexpression of AZGP1 exhibited significant effects on prostate cancer cell proliferation, clonal growth, migration, or invasion in vitro. The prostates of AZGP1-/- mice initially appeared to have grossly normal morphology; however, we observed fibrosis in the periglandular stroma and higher blood vessel density in the mouse prostate by 6 months. In PC3 and DU145 mouse xenografts, over-expression of AZGP1 did not affect tumor growth. Instead, these tumors displayed decreased microvessel density compared to xenografts derived from PC3 and DU145 control cells, suggesting that AZGP1 functions to inhibit angiogenesis in prostate cancer. Proteomics profiling further indicated that, compared to control xenografts, AZGP1 overexpressing PC3 xenografts are enriched with angiogenesis pathway proteins, including YWHAZ, EPHA2, SERPINE1, and PDCD6, MMP9, GPX1, HSPB1, COL18A1, RNH1, and ANXA1. In vitro functional studies show that AZGP1 inhibits human umbilical vein endothelial cell proliferation, migration, tubular formation and branching. Additionally, tumor microarray analysis shows that AZGP1 expression is negatively correlated with blood vessel density in human prostate cancer tissues. CONCLUSION: AZGP1 is a negative regulator of angiogenesis, such that loss of AZGP1 promotes angiogenesis in prostate cancer. AZGP1 likely exerts heterotypical effects on cells in the tumor microenvironment, such as stromal and endothelial cells. This study sheds light on the anti-angiogenic characteristics of AZGP1 in the prostate and provides a rationale to target AZGP1 to inhibit prostate cancer progression.


Assuntos
Movimento Celular , Proliferação de Células , Neovascularização Patológica , Neoplasias da Próstata , Masculino , Animais , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Linhagem Celular Tumoral , Camundongos Knockout , Glicoproteínas/metabolismo , Invasividade Neoplásica , Camundongos , Regulação Neoplásica da Expressão Gênica , Angiogênese , Glicoproteína Zn-alfa-2
2.
J Fluoresc ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37976020

RESUMO

Several fluorescent probes have been designed to detect ClO- in biological systems based on the isomerization mechanism of C = N bonds. Particularly, fluorescein has emerged as an important fluorophore for detecting ClO- because of its unique properties. Previously, we introduced the fluorescein analog F-1 with an active aldehyde group. In this study, two ClO- fluorescent sensors (F-2 and F-3) with imine groups were designed and synthesized using diaminomaleonitrile and 2-hydrazylbenzothiazole as amines. The electron cloud distribution of F-2 and F-3 in ground and excited states was explored via Gaussian calculations, reasonably explaining their photophysical properties. The fluorescence detection of ClO- in solution using the two probes (F-2 and F-3) was realized based on the mechanism of imine deprotection with ClO-. NaClO concentration titration demonstrated that the colorimetric detection of ClO- with the naked eye could be achieved using both F-2 and F-3. However, after adding ClO-, the fluorescence intensity of probe F-2 increased, whereas that of probe F-3 first decreased and then increased. Probes F-2 and F-3 exhibited good selectivity, anti-interference capability, and sensitivity, with the detection limits of 169.95 and 37.30 µM, respectively. Owing to their low cell toxicity, probes F-2 and F-3 can be applied to detect ClO- in vivo. The design approach adopted in this study will further advance the future development of ClO- chemical probes through the removal of C = N bond isomerization.

3.
J Nanobiotechnology ; 21(1): 302, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37641137

RESUMO

The biological barriers have seriously restricted the efficacious responses of oral delivery system in diseases treatment. Utilizing a carrier based on the single construction means is hard to overcome these obstacles simultaneously because the complex gastrointestinal tract environment requires carrier to have different or even contradictory properties. Interestingly, spore capsid (SC) integrates many unique biological characteristics, such as high resistance, good stability etc. This fact offers a boundless source of inspiration for the construction of multi-functional oral nanoplatform based on SC without further modification. Herein, we develop a type of biomimetic spore nanoplatform (SC@DS NPs) to successively overcome oral biological barriers. Firstly, doxorubicin (DOX) and sorafenib (SOR) are self-assembled to form carrier-free nanoparticles (DS NPs). Subsequently, SC is effectively separated from probiotic spores and served as a functional vehicle for delivering DS NPs. As expect, SC@DS NPs can efficaciously pass through the rugged stomach environment after oral administration and further be transported to the intestine. Surprisingly, we find that SC@DS NPs exhibit a significant improvement in the aspects of mucus penetration and transepithelial transport, which is related to the protein species of SC. This study demonstrates that SC@DS NPs can efficiently overcome multiple biological barriers and improve the therapeutic effect.


Assuntos
Biomimética , Proteínas do Capsídeo , Esporos , Trato Gastrointestinal , Administração Oral
4.
Proc Natl Acad Sci U S A ; 117(35): 21441-21449, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817424

RESUMO

Loss of the von Hippel-Lindau (VHL) tumor suppressor is a hallmark feature of renal clear cell carcinoma. VHL inactivation results in the constitutive activation of the hypoxia-inducible factors (HIFs) HIF-1 and HIF-2 and their downstream targets, including the proangiogenic factors VEGF and PDGF. However, antiangiogenic agents and HIF-2 inhibitors have limited efficacy in cancer therapy due to the development of resistance. Here we employed an innovative computational platform, Mining of Synthetic Lethals (MiSL), to identify synthetic lethal interactions with the loss of VHL through analysis of primary tumor genomic and transcriptomic data. Using this approach, we identified a synthetic lethal interaction between VHL and the m6A RNA demethylase FTO in renal cell carcinoma. MiSL identified FTO as a synthetic lethal partner of VHL because deletions of FTO are mutually exclusive with VHL loss in pan cancer datasets. Moreover, FTO expression is increased in VHL-deficient ccRCC tumors compared to normal adjacent tissue. Genetic inactivation of FTO using multiple orthogonal approaches revealed that FTO inhibition selectively reduces the growth and survival of VHL-deficient cells in vitro and in vivo. Notably, FTO inhibition reduced the survival of both HIF wild type and HIF-deficient tumors, identifying FTO as an HIF-independent vulnerability of VHL-deficient cancers. Integrated analysis of transcriptome-wide m6A-seq and mRNA-seq analysis identified the glutamine transporter SLC1A5 as an FTO target that promotes metabolic reprogramming and survival of VHL-deficient ccRCC cells. These findings identify FTO as a potential HIF-independent therapeutic target for the treatment of VHL-deficient renal cell carcinoma.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Mutações Sintéticas Letais , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/metabolismo , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/metabolismo
5.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37047232

RESUMO

Increased expression of NUSAP1 has been identified as a robust prognostic biomarker in prostate cancer and other malignancies. We have previously shown that NUSAP1 is positively regulated by E2F1 and promotes cancer invasion and metastasis. To further understand the biological function of NUSAP1, we used affinity purification and mass spectrometry proteomic analysis to identify NUSAP1 interactors. We identified 85 unique proteins in the NUSAP1 interactome, including ILF2, DHX9, and other RNA-binding proteins. Using proteomic approaches, we uncovered a function for NUSAP1 in maintaining R-loops and in DNA damage response through its interaction with ILF2. Co-immunoprecipitation and colocalization using confocal microscopy verified the interactions of NUSAP1 with ILF2 and DHX9, and RNA/DNA hybrids. We showed that the microtubule and charged helical domains of NUSAP1 were necessary for the protein-protein interactions. Depletion of ILF2 alone further increased camptothecin-induced R-loop accumulation and DNA damage, and NUSAP1 depletion abolished this effect. In human prostate adenocarcinoma, NUSAP1 and ILF2 mRNA expression levels are positively correlated, elevated, and associated with poor clinical outcomes. Our study identifies a novel role for NUSAP1 in regulating R-loop formation and accumulation in response to DNA damage through its interactions with ILF2 and hence provides a potential therapeutic target.


Assuntos
Neoplasias da Próstata , Estruturas R-Loop , Humanos , Masculino , Dano ao DNA , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteômica
6.
Am J Physiol Renal Physiol ; 319(5): F876-F884, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017192

RESUMO

Renal injury leads to chronic kidney disease, with which women are not only more likely to be diagnosed than men but have poorer outcomes as well. We have previously shown that expression of small proline-rich region 2f (Sprr2f), a member of the small proline-rich region (Sprr) gene family, is increased several hundredfold after renal injury using a unilateral ureteral obstruction (UUO) mouse model. To better understand the role of Sprr2f in renal injury, we generated a Sprr2f knockout (Sprr2f-KO) mouse model using CRISPR-Cas9 technology. Sprr2f-KO female mice showed greater renal damage after UUO compared with wild-type (Sprr2f-WT) animals, as evidenced by higher hydroxyproline levels and denser collagen staining, indicating a protective role of Sprr2f during renal injury. Gene expression profiling by RNA sequencing identified 162 genes whose expression levels were significantly different between day 0 and day 5 after UUO in Sprr2f-KO mice. Of the 162 genes, 121 genes were upregulated after UUO and enriched with those involved in oxidation-reduction, a phenomenon not observed in Sprr2f-WT animals, suggesting a protective role of Sprr2f in UUO through defense against oxidative damage. Consistently, bilateral ischemia-reperfusion injury resulted in higher serum blood urea nitrogen levels and higher tissue reactive oxygen species in Sprr2f-KO compared with Sprr2f-WT female mice. Moreover, cultured renal epithelial cells from Sprr2f-KO female mice showed lower viability after oxidative damage induced by menadione compared with Sprr2f-WT cells that could be rescued by supplementation with reduced glutathione, suggesting that Sprr2f induction after renal damage acts as a defense against reactive oxygen species.


Assuntos
Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Células Epiteliais/metabolismo , Rim/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Proteínas Ricas em Prolina do Estrato Córneo/genética , Modelos Animais de Doenças , Feminino , Túbulos Renais/metabolismo , Camundongos Knockout , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Obstrução Ureteral/patologia
7.
Int J Cancer ; 147(1): 256-265, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31863456

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common and lethal subtype of kidney cancer. Intraoperative frozen section (IFS) analysis is used to confirm the diagnosis during partial nephrectomy. However, surgical margin evaluation using IFS analysis is time consuming and unreliable, leading to relatively low utilization. In our study, we demonstrated the use of desorption electrospray ionization mass spectrometry imaging (DESI-MSI) as a molecular diagnostic and prognostic tool for ccRCC. DESI-MSI was conducted on fresh-frozen 23 normal tumor paired nephrectomy specimens of ccRCC. An independent validation cohort of 17 normal tumor pairs was analyzed. DESI-MSI provides two-dimensional molecular images of tissues with mass spectra representing small metabolites, fatty acids and lipids. These tissues were subjected to histopathologic evaluation. A set of metabolites that distinguish ccRCC from normal kidney were identified by performing least absolute shrinkage and selection operator (Lasso) and log-ratio Lasso analysis. Lasso analysis with leave-one-patient-out cross-validation selected 57 peaks from over 27,000 metabolic features across 37,608 pixels obtained using DESI-MSI of ccRCC and normal tissues. Baseline Lasso of metabolites predicted the class of each tissue to be normal or cancerous tissue with an accuracy of 94 and 76%, respectively. Combining the baseline Lasso with the ratio of glucose to arachidonic acid could potentially reduce scan time and improve accuracy to identify normal (82%) and ccRCC (88%) tissue. DESI-MSI allows rapid detection of metabolites associated with normal and ccRCC with high accuracy. As this technology advances, it could be used for rapid intraoperative assessment of surgical margin status.


Assuntos
Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Carcinoma de Células Renais/diagnóstico por imagem , Secções Congeladas , Humanos , Neoplasias Renais/diagnóstico por imagem
8.
J Fluoresc ; 27(2): 483-489, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27896561

RESUMO

As one of the most important coumarin-like dyes, disperse fluorescent Yellow 82 exhibits exceptionally large two-photon effects. Here, it was firstly introduced into the supercritical CO2 dyeing polyester fabrics in this work. Results of the present work showed that the dyeing parameters such as the dyeing time, pressure and temperature had remarkable influences on the color strength of fabrics. The optimized dyeing condition in supercritical CO2 dyeing has been proposed that the dyeing time was 60 min; the pressure was 25 MPa and the temperature was 120 °C. As a result, acceptable products were obtained with the wash and rub fastness rating at 5 or 4-5. The polyester fabrics dyed with fluorescent dyes can be satisfied for the requirement of manufacturing warning clothing. Importantly, the confocal microscopy imaging technology was successfully introduced into textile fields to observe the distribution and fluorescence intensity of disperse fluorescent Yellow 82 on polyester fabrics. As far as we know, this is the first report about supercritical CO2 dyeing polyester fabrics based on disperse fluorescent dyes. It will be very helpful for the further design of new fluorescent functional dyes suitable for supercritical CO2 dyeing technique.

9.
Nanotechnology ; 27(2): 025101, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26629735

RESUMO

It is highly desirable to develop smart nanocarriers with stimuli-responsive drug-releasing and diagnostic-imaging functions for cancer theranostics. Herein, we develop a reduction and pH dual-responsive tumor theranostic platform based on degradable manganese dioxide (MnO2) nanosheets. The MnO2 nanosheets with a size of 20-60 nm were first synthesized and modified with (3-Aminopropyl) trimethoxysilane (APTMS) to get amine-functionalized MnO2, and then functionalized by NH2-PEG2000-COOH (PEG). The tumor-targeting group, folic acid (FA), was finally conjugated with the PEGylated MnO2 nanosheets. Then, doxorubicin (DOX), a chemotherapeutic agent, was loaded onto the modified nanosheets through a physical adsorption, which was designated as MnO2-PEG-FA/DOX. The prepared MnO2-PEG-FA/DOX nanosheets with good biocompatibility can not only efficiently deliver DOX to tumor cells in vitro and in vivo, leading to enhanced anti-tumor efficiency, but can also respond to a slightly acidic environment and high concentration of reduced glutathione (GSH), which caused degradation of MnO2 into manganese ions enabling magnetic resonance imaging (MRI). The longitudinal relaxation rate r1 was 2.26 mM(-1) s(-1) at pH 5.0 containing 2 mM GSH. These reduction and pH dual-responsive biodegradable nanosheets combining efficient MRI and chemotherapy provide a novel and promising platform for tumor-targeting theranostic application.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Ácido Fólico/administração & dosagem , Compostos de Manganês/química , Neoplasias/tratamento farmacológico , Óxidos/química , Nanomedicina Teranóstica/métodos , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Ácido Fólico/química , Células HeLa , Humanos , Nanoconchas/química , Neoplasias/patologia , Tamanho da Partícula , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Radiology ; 277(1): 114-23, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26402495

RESUMO

PURPOSE: To evaluate the feasibility of constructing radiogenomic-based surrogates of molecular assays (SOMAs) in patients with clear-cell renal cell carcinoma (CCRCC) by using data extracted from a single computed tomographic (CT) image. MATERIALS AND METHODS: In this institutional review board approved study, gene expression profile data and contrast material-enhanced CT images from 70 patients with CCRCC in a training set were independently assessed by two radiologists for a set of predefined imaging features. A SOMA for a previously validated CCRCC-specific supervised principal component (SPC) risk score prognostic gene signature was constructed and termed the radiogenomic risk score (RRS). It uses the microarray data and a 28-trait image array to evaluate each CT image with multiple regression of gene expression analysis. The predictive power of the RRS SOMA was then prospectively validated in an independent dataset to confirm its relationship to the SPC gene signature (n = 70) and determination of patient outcome (n = 77). Data were analyzed by using multivariate linear regression-based methods and Cox regression modeling, and significance was assessed with receiver operator characteristic curves and Kaplan-Meier survival analysis. RESULTS: Our SOMA faithfully represents the tissue-based molecular assay it models. The RRS scaled with the SPC gene signature (R = 0.57, P < .001, classification accuracy 70.1%, P < .001) and predicted disease-specific survival (log rank P < .001). Independent validation confirmed the relationship between the RRS and the SPC gene signature (R = 0.45, P < .001, classification accuracy 68.6%, P < .001) and disease-specific survival (log-rank P < .001) and that it was independent of stage, grade, and performance status (multivariate Cox model P < .05, log-rank P < .001). CONCLUSION: A SOMA for the CCRCC-specific SPC prognostic gene signature that is predictive of disease-specific survival and independent of stage was constructed and validated, confirming that SOMA construction is feasible.


Assuntos
Carcinoma de Células Renais/diagnóstico , Neoplasias Renais/diagnóstico , Análise em Microsséries , Técnicas de Diagnóstico Molecular , Tomografia Computadorizada por Raios X , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Renais/genética , Estudos de Viabilidade , Feminino , Genômica , Humanos , Neoplasias Renais/genética , Masculino , Pessoa de Meia-Idade , Prognóstico , Medição de Risco
11.
Int J Cancer ; 134(10): 2322-9, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24243565

RESUMO

mTOR is a rational target in renal cell carcinoma (RCC) because of its role in disease progression. However, the effects of temsirolimus, the only first-generation mTOR inhibitor approved by the FDA for first-line treatment of metastatic RCC, on tumor reduction and progression-free survival are minimal. Second-generation mTOR inhibitors have not been evaluated on RCC. We compared the effects of temsirolimus and MLN0128, a potent second-generation mTOR inhibitor, on RCC growth and metastasis using a realistic patient-derived tissue slice graft (TSG) model. TSGs were derived from three fresh primary RCC specimens by subrenal implantation of precision-cut tissue slices into immunodeficient mice that were randomized and treated with MLN0128, temsirolimus, or placebo. MLN0128 consistently suppressed primary RCC growth, monitored by magnetic resonance imaging (MRI), in three TSG cohorts for up to 2 months. Temsirolimus, in contrast, only transiently inhibited the growth of TSGs in one of two cohorts before resistance developed. In addition, MLN0128 reduced liver metastases, determined by human-specific quantitative polymerase chain reaction, in two TSG cohorts, whereas temsirolimus failed to have any significant impact. Moreover, MLN0128 decreased levels of key components of the two mTOR subpathways including TORC1 targets 4EBP1, p-S6K1, HIF1α and MTA1 and the TORC2 target c-Myc, consistent with dual inhibition. Our results demonstrated that MLN0128 is superior to temsirolimus in inhibiting primary RCC growth as well as metastases, lending strong support for further clinical development of dual mTOR inhibitors for RCC treatment.


Assuntos
Benzoxazóis/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , Pirimidinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Adulto , Animais , Carcinoma de Células Renais/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Immunoblotting , Neoplasias Renais/patologia , Neoplasias Hepáticas/prevenção & controle , Neoplasias Hepáticas/secundário , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Complexos Multiproteicos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Sirolimo/análogos & derivados , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
12.
J Urol ; 191(3): 842-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24035881

RESUMO

PURPOSE: DNA damage responses are relevant to prostate cancer initiation, progression and treatment. Few models of the normal and malignant human prostate that maintain stromal-epithelial interactions in vivo exist in which to study DNA damage responses. We evaluated the feasibility of maintaining tissue slice grafts at subcutaneous vs subrenal capsular sites in RAG2(-/-)γC(-/-) mice to study the DNA damage responses of normal and malignant glands. MATERIALS AND METHODS: We compared the take rate and histology of tissue slice grafts from fresh, precision cut surgical specimens that were maintained for 1 to 4 weeks in subcutaneous vs subrenal capsular sites. Induction of γH2AX, p53, ATM and apoptosis was evaluated as a measure of the DNA damage response after irradiation. RESULTS: The take rate of subcutaneous tissue slice grafts was higher than typically reported but lower than at the subrenal capsular site. Subcutaneous tissue slice grafts frequently showed basal cell hyperplasia, squamous metaplasia and cystic atrophy, and cancer did not survive. In contrast, normal and malignant histology was well maintained in subrenal capsular tissue slice grafts. Regardless of implantation site the induction of γH2AX and ATM occurred in tissue slice graft epithelium 1 hour after irradiation and decreased to basal level by 24 hours, indicating DNA damage recognition and repair. As observed previously in prostatic ex vivo models, p53 was not activated. Notably, tumor but not normal cells responded to irradiation by undergoing apoptosis. CONCLUSIONS: To our knowledge this is the first study of DNA damage responses in a patient derived prostate tissue graft model. The subrenal capsular site of RAG2(-/-)γC(-/-) mice optimally maintains normal and malignant histology and function, permitting novel studies of DNA damage responses in a physiological context.


Assuntos
Dano ao DNA , Neoplasias da Próstata/genética , Transplante de Tecidos/métodos , Animais , Apoptose , Reparo do DNA , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Microscopia de Fluorescência , Gradação de Tumores , Próstata/patologia , Neoplasias da Próstata/patologia
13.
Sci Rep ; 14(1): 3716, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355753

RESUMO

Glycoproteins in urine have the potential to provide a rich class of informative molecules for studying human health and disease. Despite this promise, the urine glycoproteome has been largely uncharacterized. Here, we present the analysis of glycoproteins in human urine using LC-MS/MS-based intact glycopeptide analysis, providing both the identification of protein glycosites and characterization of the glycan composition at specific glycosites. Gene enrichment analysis reveals differences in biological processes, cellular components, and molecular functions in the urine glycoproteome versus the urine proteome, as well as differences based on the major glycan class observed on proteins. Meta-heterogeneity of glycosylation is examined on proteins to determine the variation in glycosylation across multiple sites of a given protein with specific examples of individual sites differing from the glycosylation trends in the overall protein. Taken together, this dataset represents a potentially valuable resource as a baseline characterization of glycoproteins in human urine for future urine glycoproteomics studies.


Assuntos
Glicopeptídeos , Espectrometria de Massas em Tandem , Humanos , Glicopeptídeos/química , Cromatografia Líquida , Glicoproteínas/metabolismo , Proteoma/química , Polissacarídeos/química
14.
Asian J Pharm Sci ; 19(3): 100912, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38903128

RESUMO

Bacterial-based antitumor immunity has become a promising strategy to activate the immune system for fighting cancer. However, the potential application of bacterial therapy is hindered by the presence of instability and susceptibility to infections within bacterial populations. Furthermore, monotherapy is ineffective in completely eliminating complex cancer with multiple contributing factors. In this study, based on our discovery that spore shell (SS) of Bacillus coagulans exhibits excellent tumor-targeting ability and adjuvant activity, we develop a biomimetic spore nanoplatform to boost bacteria-mediated antitumor therapy, chemodynamic therapy and antitumor immunity for synergistic cancer treatment. In detail, SS is separated from probiotic spores and then attached to the surface of liposome (Lipo) that was loaded with hemoglobin (Hb), glucose oxidase (GOx) and JQ1 to construct SS@Lipo/Hb/GOx/JQ1. In tumor tissue, highly toxic hydroxyl radicals (•OH) are generated via sequential catalytic reactions: GOx catalyzing glucose into H2O2 and Fe2+ in Hb decomposing H2O2 into •OH. The combination of •OH and SS adjuvant can improve tumor immunogenicity and activate immune system. Meanwhile, JQ1-mediated down-regulation of PD-L1 and Hb-induced hypoxia alleviation synergistically reshape immunosuppressive tumor microenvironment and potentiate immune response. In this manner, SS@Lipo/Hb/GOx/JQ1 significantly suppresses tumor growth and metastasis. To summarize, the nanoplatform represents an optimum strategy to potentiate bacteria-based cancer immunotherapy.

15.
J Transl Med ; 11: 199, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23985008

RESUMO

BACKGROUND: Effective eradication of high-risk primary prostate cancer (HRPCa) could significantly decrease mortality from prostate cancer. However, the discovery of curative therapies for HRPCa is hampered by the lack of authentic preclinical models. METHODS: We improved upon tumorgraft models that have been shown to predict drug response in other cancer types by implanting thin, precision-cut slices of HRPCa under the renal capsule of immunodeficient mice. Tissue slice grafts (TSGs) from 6 cases of HRPCa were established in mice. Following androgen deprivation by castration, TSGs were recovered and the presence and phenotype of cancer cells were evaluated. RESULTS: High-grade cancer in TSGs generated from HRPCa displayed characteristic Gleason patterns and biomarker expression. Response to androgen deprivation therapy (ADT) was as in humans, with some cases exhibiting complete pathologic regression and others showing resistance to castration. As in humans, ADT decreased cell proliferation and prostate-specific antigen expression in TSGs. Adverse pathological features of parent HRPCa were associated with lack of regression of cancer in corresponding TSGs after ADT. Castration-resistant cancer cells remaining in TSGs showed upregulated expression of androgen receptor target genes, as occurs in castration-resistant prostate cancer (CRPC) in humans. Finally, a rare subset of castration-resistant cancer cells in TSGs underwent epithelial-mesenchymal transition, a process also observed in CRPC in humans. CONCLUSIONS: Our study demonstrates the feasibility of generating TSGs from multiple patients and of generating a relatively large number of TSGs from the same HRPCa specimen with similar cell composition and histology among control and experimental samples in an in vivo setting. The authentic response of TSGs to ADT, which has been extensively characterized in humans, suggests that TSGs can serve as a surrogate model for clinical trials to achieve rapid and less expensive screening of therapeutics for HRPCa and primary CRPC.


Assuntos
Androgênios/deficiência , Neoplasias da Próstata/terapia , Androgênios/farmacologia , Animais , Biomarcadores Tumorais/metabolismo , Caderinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Orquiectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Fatores de Risco , Vimentina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Intractable Rare Dis Res ; 12(3): 148-160, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37662624

RESUMO

Rare diseases are diseases that occur at low prevalence, and most of them are chronic and serious diseases that are often life-threatening. Currently, there is no unified definition for rare diseases. The diagnosis, treatment, and research of rare diseases have become the focus of medicine and biopharmacology, as well as the breakthrough point of clinical and basic research. Birth defects are the hard-hit area of rare diseases and the frontiers of its research. Since most of these defects have a genetic basis, early screening and diagnosis have important scientific value and social significance for the prevention and control of such diseases. At present, there is no effective treatment for most rare diseases, but progress in prenatal diagnosis and screening can prevent the occurrence of diseases and help prevent and treat rare diseases. This article discusses the progress in genetic-related birth defects and rare diseases.

17.
Exploration (Beijing) ; 3(4): 20220124, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37933240

RESUMO

Breast cancer with bone metastasis accounts for serious cancer-associated pain which significantly reduces the quality of life of affected patients and promotes cancer progression. However, effective treatment using nanomedicine remains a formidable challenge owing to poor drug delivery efficiency to multiple cancer lesions and inappropriate management of cancer-associated pain. In this study, using engineered macrophage membrane (EMM) and drugs loaded nanoparticle, we constructed a biomimetic nanoplatform (EMM@DJHAD) for the concurrent therapy of bone metastatic breast cancer and associated pain. Tumor tropism inherited from EMM provided the targeting ability for both primary and metastatic lesions. Subsequently, the synergistic combination of decitabine and JTC801 boosted the lytic and inflammatory responses accompanied by a tumoricidal effect, which transformed the tumor into an ideal decoy for EMM, resulting in prolonged troop migration toward tumors. EMM@DJHAD exerted significant effects on tumor suppression and a pronounced analgesic effect by inhibiting µ-opioid receptors in bone metastasis mouse models. Moreover, the nanoplatform significantly reduced the severe toxicity induced by chemotherapy agents. Overall, this biomimetic nanoplatform with good biocompatibility may be used for the effective treatment of breast cancer with bone metastasis.

18.
Acta Pharm Sin B ; 13(9): 3892-3905, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37719383

RESUMO

Activating humoral and cellular immunity in lymph nodes (LNs) of nanoparticle-based vaccines is critical to controlling tumors. However, how the physical properties of nanovaccine carriers orchestrate antigen capture, lymphatic delivery, antigen presentation and immune response in LNs is largely unclear. Here, we manufactured gold nanoparticles (AuNPs) with the same size but different shapes (cages, rods, and stars), and loaded tumor antigen as nanovaccines to explore their disparate characters on above four areas. Results revealed that star-shaped AuNPs captured and retained more repetitive antigen epitopes. On lymphatic delivery, both rods and star-shaped nanovaccines mainly drain into the LN follicles region while cage-shaped showed stronger paracortex retention. A surprising finding is that the star-shaped nanovaccines elicited potent humoral immunity, which is mediated by CD4+ T helper cell and follicle B cell cooperation significantly preventing tumor growth in the prophylactic study. Interestingly, cage-shaped nanovaccines preferentially presented peptide-MHC I complexes to evoke robust CD8+ T cell immunity and showed the strongest therapeutic efficacy when combined with the PD-1 checkpoint inhibitor in established tumor study. These results highlight the importance of nanoparticle shape on antigen delivery and presentation for immune response in LNs, and our findings support the notion that different design strategies are required for prophylactic and therapeutic vaccines.

19.
JCO Precis Oncol ; 7: e2200668, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37285559

RESUMO

PURPOSE: Accurately distinguishing renal cell carcinoma (RCC) from normal kidney tissue is critical for identifying positive surgical margins (PSMs) during partial and radical nephrectomy, which remains the primary intervention for localized RCC. Techniques that detect PSM with higher accuracy and faster turnaround time than intraoperative frozen section (IFS) analysis can help decrease reoperation rates, relieve patient anxiety and costs, and potentially improve patient outcomes. MATERIALS AND METHODS: Here, we extended our combined desorption electrospray ionization mass spectrometry imaging (DESI-MSI) and machine learning methodology to identify metabolite and lipid species from tissue surfaces that can distinguish normal tissues from clear cell RCC (ccRCC), papillary RCC (pRCC), and chromophobe RCC (chRCC) tissues. RESULTS: From 24 normal and 40 renal cancer (23 ccRCC, 13 pRCC, and 4 chRCC) tissues, we developed a multinomial lasso classifier that selects 281 total analytes from over 27,000 detected molecular species that distinguishes all histological subtypes of RCC from normal kidney tissues with 84.5% accuracy. On the basis of independent test data reflecting distinct patient populations, the classifier achieves 85.4% and 91.2% accuracy on a Stanford test set (20 normal and 28 RCC) and a Baylor-UT Austin test set (16 normal and 41 RCC), respectively. The majority of the model's selected features show consistent trends across data sets affirming its stable performance, where the suppression of arachidonic acid metabolism is identified as a shared molecular feature of ccRCC and pRCC. CONCLUSION: Together, these results indicate that signatures derived from DESI-MSI combined with machine learning may be used to rapidly determine surgical margin status with accuracies that meet or exceed those reported for IFS.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/diagnóstico por imagem , Rim/diagnóstico por imagem , Rim/cirurgia , Rim/metabolismo , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/cirurgia , Espectrometria de Massas , Aprendizado de Máquina
20.
J Urol ; 188(6): 2158-64, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23088973

RESUMO

PURPOSE: AR-V7, a ligand independent splice variant of androgen receptor, may support the growth of castration resistant prostate cancer and have prognostic value. Another variant, AR-V1, interferes with AR-V7 activity. We investigated whether AR-V7 or V1 expression would predict biochemical recurrence in men at indeterminate (about 50%) risk for progression following radical prostatectomy. MATERIALS AND METHODS: AR-V7 and V1 transcripts in a mixed grade cohort of 53 men in whom cancer contained 30% to 70% Gleason grade 4/5 and in a grade 3 only cohort of 52 were measured using a branched chain DNA assay. Spearman rank correlations of the transcripts, and histomorphological and clinical variables were determined. AR-V7 and V1 levels were assessed as determinants of recurrence in the mixed grade cohort by logistic regression and survival analysis. The impact of TMPRSS2-ERG gene fusion on prognosis was also evaluated. RESULTS: Neither AR-V7 nor V1 levels in grade 3 or 4/5 cancer in the mixed grade cohort were associated with recurrence or time to recurrence. However, AR-V7 and V1 inversely correlated with serum prostate specific antigen and positively correlated with age. The AR-V1 level in grade 3 cancer in the grade 3 only cohort was higher than in grade 3 or grade 4/5 components of mixed grade cancer. TMPRSS2-ERG fusion was not associated with AR-V7, AR-V1 or recurrence but it was associated with the percent of grade 4/5 cancer. CONCLUSIONS: The AR-V1 or V7 transcript level does not predict recurrence in patients with high grade prostate cancer at indeterminate risk for progression. Grade 3 cancer in mixed grade tumors may differ from 100% grade 3 cancer, at least in AR-V1 expression.


Assuntos
Biomarcadores Tumorais/metabolismo , Antígeno Prostático Específico/sangue , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Idoso , Progressão da Doença , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Recidiva Local de Neoplasia/metabolismo , Prognóstico , Próstata/patologia , Próstata/cirurgia , Prostatectomia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/cirurgia , Recidiva , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA