Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918275

RESUMO

In recent years, the interest in radar automatic target recognition (RATR) based on the carrier-free ultra-wideband (UWB) radar has been increasing. Compared with narrow-band and other bandwidth radars, the echo signal of the carrier-free UWB radar includes more comprehensive and detailed information with respect to the targeted object. In this paper, we first utilized 3ds Max to acquire accurate geometric models and applied a time-domain integral equation (TDIE) for echo signal acquisition under the condition that the transmitted signals had an extremely short duration period. By comparing the simulated waveform with the actual one, the accuracy of the electromagnetic modeling is verified. Furthermore, given that the actual environment is full of noise and clutter, we propose an improved two-dimensional variational mode decomposition (2D-IVMD), and an algorithm is proposed to eliminate noise and extract edge features preliminarily, which lays a foundation for further in-depth feature extraction. Then, the deep conventional neural network (DCNN) is introduced for the final recognition. The results show that the proposed methods achieve promising classification performance under the condition of low signal-to-noise ratio (SNR) values.

2.
Sensors (Basel) ; 21(2)2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435248

RESUMO

Automatically recognizing the modulation of radar signals is a necessary survival technique in electronic intelligence systems. In order to avoid the complex process of the feature extracting and realize the intelligent modulation recognition of various radar signals under low signal-to-noise ratios (SNRs), this paper proposes a method based on intrapulse signatures of radar signals using adaptive singular value reconstruction (ASVR) and deep residual learning. Firstly, the time-frequency spectrums of radar signals under low SNRs are improved after ASVR denoising processing. Secondly, a series of image processing techniques, including binarizing and morphologic filtering, are applied to suppress the background noise in the time-frequency distribution images (TFDIs). Thirdly, the training process of the residual network is achieved using TFDIs, and classification under various conditions is realized using the new-trained network. Simulation results show that, for eight kinds of modulation signals, the proposed approach still achieves an overall probability of successful recognition of 94.1% when the SNR is only -8 dB. Outstanding performance proves the superiority and robustness of the proposed method.

3.
Sensors (Basel) ; 17(5)2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28534809

RESUMO

In order to improve the azimuth resolution beyond what monostatic synthetic aperture radar (SAR) can achieve in the forward-looking area, an asymmetric configuration bistatic SAR system and its imaging algorithm are proposed in this paper. The transmitter is mounted on a fixed platform in side-looking mode while the receiver moves along a nonlinear trajectory in forward-looking mode. Due to the high velocity and acceleration of the maneuvering platform in both along-track and height direction, the traditional algorithms are no longer applicable. In this paper, a new algorithm based on the high precise 2-D frequency spectrum is proposed, which takes high-order Taylor series expansion terms of the slant range into consideration. The proposed algorithm compensates high-order range-azimuth coupling terms to guarantee the focus accuracy in SAR imaging. The simulation results and error analysis validate the effectiveness of the proposed algorithm and the correctness of our analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA