RESUMO
OBJECTIVE: In this study, our aim was to develop and validate the effectiveness of diverse radiomic models for distinguishing between gnathic fibrous dysplasia (FD) and ossifying fibroma (OF) before surgery. MATERIALS AND METHODS: We enrolled 220 patients with confirmed FD or OF. We extracted radiomic features from nonenhanced CT images. Following dimensionality reduction and feature selection, we constructed radiomic models using logistic regression, support vector machine, random forest, light gradient boosting machine, and eXtreme gradient boosting. We then identified the best radiomic model using receiver operating characteristic (ROC) curve analysis. After combining radiomics features with clinical features, we developed a comprehensive model. ROC curve and decision curve analysis (DCA) demonstrated the models' robustness and clinical value. RESULTS: We extracted 1834 radiomic features from CT images, reduced them to eight valuable features, and achieved high predictive efficiency, with area under curves (AUC) exceeding 0.95 for all the models. Ultimately, our combined model, which integrates radiomic and clinical data, displayed superior discriminatory ability (AUC: training cohort 0.970; test cohort 0.967). DCA highlighted its optimal clinical efficacy. CONCLUSION: Our combined model effectively differentiates between FD and OF, offering a noninvasive and efficient approach to clinical decision-making.
RESUMO
The effect of combined antibiotics exposure on nitrogen removal, microbial community assembly and proliferation of antibiotics resistance genes (ARGs) is a hotspot in activated sludge system. However, it is unclear that how the historical antibiotic stress affects the subsequent responses of microbes and ARGs to combined antibiotics. In this study, the effects of combined sulfamethoxazole (SMX) and trimethoprim (TMP) pollution on activated sludge under legacy of SMX or TMP stress with different doses (0.005-30 mg/L) were investigated to clarify antibiotic legacy effects. Nitrification activity was inhibited under higher level of combined exposure but a high total nitrogen removal (â¼70%) occurred. Based on the full-scale classification, the legacy effect of past antibiotic stress had a marked effect on community composition of conditionally abundant taxa (CAT) and conditionally rare or abundant taxa (CRAT). Rare taxa (RT) were the keystone taxa in the microbial network, and the responses of hub genera were also affected by the legacy of antibiotic stress. Nitrifying bacteria and genes were inhibited by the antibiotics and aerobic denitrifying bacteria (Pseudomonas, Thaurea and Hydrogenophaga) were enriched under legacy of high dose, as were the key denitrifying genes (napA, nirK and norB). Furthermore, the occurrences and co-selection relationship of 94 ARGs were affected by legacy effect. While, some shared hosts (eg., Citrobacter) and hub ARGs (eg., mdtD, mdtE and acrD) were identified. Overall, antibiotic legacy could affect responses of activated sludge to combined antibiotic and the legacy effect was stronger at higher exposure levels.
Assuntos
Antibacterianos , Esgotos , Antibacterianos/toxicidade , Nitrificação , Bactérias/genética , Sulfametoxazol , Resistência Microbiana a Medicamentos/genética , NitrogênioRESUMO
In order to find high-efficiency and low-toxic anti-tumor drugs, 29 pyrido[3,4-d]pyrimidine compounds were designed, synthesized and evaluated by MTT assay in vitro. The results presented that most of the compounds had good antitumor activities, among which compound 30 had the best anti-tumor activity on MGC803 cells (IC50 = 0.59 µM). Mechanistic studies exhibited that compound 30 inhibited migration of MGC803 and induced apoptosis. It was proved that compound 30 up-regulated expression of Bid and PARP, down-regulated expression of CycD1 by western blot experiments. This study indicated that compound 30 might be served as a lead agent for the treatment of human gastric cancers.
Assuntos
Antineoplásicos , Apoptose , Pirimidinas , Humanos , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Poli(ADP-Ribose) Polimerases/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular TumoralRESUMO
OBJECTIVES: To investigate the accuracy of fused CBCT images in diagnosing three distinct groups of bone changes characterized by volume and thickness decrease in patients with temporomandibular joint osteoarthrosis (TMJ OA) during follow-up. METHODS: In this retrospective study, 109 patients (176 TMJs) with TMJ OA were included. Two consecutive CBCT images for the same patient were registered and fused. Then, three image sets were established: without fusion, fused 2D image, and fused 3D image. Three residents randomly and independently evaluated whether there was condylar resorption with the three image sets respectively. The samples diagnosed as condylar resorption by the expert panel were divided into three subgroups according to the volume and thickness decrease calculated after segmentation. The inter- and intraobserver agreement, receiver operating characteristic (ROC), and area under the curve (AUC) evaluated the diagnostic capability for different subgroups. RESULTS: For the volume decrease more than 50 mm3 and thickness decrease more than 1 mm groups, the AUC values for fused image sets were higher than those without fusion (p < 0.01). For the volume decrease within 50 mm3 and thickness decrease within 1 mm groups, the AUC values for fused 2D image sets were higher than the image sets without fusion (p < 0.05), but there was no significant difference between the fused 3D image sets and the image sets without fusion (p = 0.48 for volume decrease, p = 0.37 for thickness decrease). CONCLUSIONS: The fused images can improve the diagnostic accuracy and repeatability for the samples with at least 50 mm3 volume decrease or 1 mm thickness decrease compared with the image groups without fusion.
Assuntos
Reabsorção Óssea , Osteoartrite , Tomografia Computadorizada de Feixe Cônico Espiral , Transtornos da Articulação Temporomandibular , Humanos , Estudos Retrospectivos , Tomografia Computadorizada de Feixe Cônico/métodos , Articulação Temporomandibular , Transtornos da Articulação Temporomandibular/diagnóstico por imagem , Osteoartrite/diagnóstico por imagem , Reabsorção Óssea/diagnóstico por imagem , Côndilo Mandibular/diagnóstico por imagemRESUMO
The responses of microbial communities and antibiotic resistance genes (ARGs) to azithromycin and copper combined pollution under gradient increasing (from 0.5 to 10 mg/L) and decreasing exposure (from 10 to 0.5 mg/L) modes were investigated. Nitrification was inhibited more obviously under gradient increasing exposure mode. Responses of archaeal community and function structure were more obvious than bacteria under both exposure modes. The dominant bacterial and archaeal compositions (Hyphomicrobium, Euryarchaeota, etc.) were affected by two exposure modes, except some rare archaea (Methanoregula and Methanosarcina). There were more positive correlations between bacteria and archaea, and Nitrospira was keystone genus. Ammonia-oxidizing archaea (0.37-3.06%) and complete ammonia oxidizers (Nitrospira_ENR4) were enriched, and Nitrososphaera_viennensis was closely related to denitrifying genes (napA/B, nosZ, etc.). 50 ARG subtypes were detected and specific ARG subtypes (aac, ImrA, etc.) proliferated in two exposure modes. Bacteria and archaea were common hosts for 24 ARGs and contributed to their shifts.
Assuntos
Microbiota , Esgotos , Amônia , Antibacterianos , Archaea/genética , Resistência Microbiana a Medicamentos/genética , Nitrificação , Oxirredução , FilogeniaRESUMO
The co-exposure of antibiotics has important effects on antibiotic resistance genes (ARGs) and microbial community aggregation in wastewater treatment plants (WWTPs). However, it is unclear whether differences in historical antibiotic exposure stress can determine responses of microbes and ARGs to combined antibiotics. By selecting a high concentration (30 mg·L-1) of sulfamethoxazole (SMX) and trimethoprim (TMP) as historical exposure stress conditions, the effects of SMX and TMP-combined pollution on ARGs, bacterial communities, and their interactions were explored in short-term experiments. Based on high-throughput quantitative PCR, a total of 13 ARGs were detected, and the absolute abundance was 2.21-5.42 copies·µL-1 (logarithm, DNA, the same below). Among them, sul2, ermB, mefA, and tetM-01 were the main subtypes in the samples, and the absolute abundance was between 2.95 and 5.40 copies·µL-1. The combined contamination of SMX and TMP could cause the enrichment of ARGs and mobile genetic elements (MGEs); however, their effects on each subtype were different, and the historical legacy effect of SMX was higher than that of TMP. Under the different exposure histories, the co-occurrence and co-exclusion patterns existed between ARGs. Moreover, MGEs (especially intI-1) were significantly correlated with sulfonamides (sul1 and sul2), tetracyclines[tet(32)], and macrolide-lincosamide-streptogramin (MLSB) resistance genes (ermB). Based on the full-scale classification of microorganisms, it was found that the microbial community structure of various groups responded differently to combined pollution, and the conditionally abundant taxa (CAT) were obviously enriched. Thauera, Pseudoxanthomonas, and Paracoccus were the dominant resistant bacterial genera. Furthermore, a total of 31 potential hosts of ARGs were identified with network analysis, which were dominated with conditionally rare taxa (CRT). Particularly, Candidatus_Alysiosphaera and Fusibacter were positively correlated with most of the ARGs, being the common protentional hosts. Importantly, some rare genera (RT, Variibacter, Aeromonas, Cloacibacterium, etc.) were potential hosts of transposon IS613, which played an important role in the proliferation and spread of ARGs. In conclusion, this study revealed the legacy effects of historical antibiotic stress on ARGs and their hosts, which could provide new ideas and theoretical basis for reducing ARGs pollution in WWTPs.
Assuntos
Antibacterianos , Esgotos , Antibacterianos/análise , Antibacterianos/farmacologia , Bactérias , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Lincosamidas/análise , Lincosamidas/farmacologia , Macrolídeos/farmacologia , Esgotos/microbiologia , Estreptograminas/farmacologia , Sulfametoxazol/farmacologia , Tetraciclinas/análise , Tetraciclinas/farmacologia , Trimetoprima/análise , Trimetoprima/farmacologia , Águas Residuárias/microbiologiaRESUMO
Effect of copper (Cu) on antibiotic resistance genes (ARGs) and bacterial/archaeal community of activated sludge under gradient increasing (0.5-10 mg/L) or decreasing exposure (10-0.5 mg/L) modes was explored. Here, 29 genes were detected among 48 selected ARGs and mobile gene elements (MGEs). Two exposure modes showed dissimilar effects on ARGs and distribution was more affected by environmental concentrations of Cu, which promoted transmission of ARGs (multiple drug resistance and sulfonamide). Cellular protection was main resistance mechanism, which was less inhibited than efflux pumps. The tnpA-02, as main MGE, interacted closely with ARGs (sul2, floR, etc.). Gradient increasing exposure mode had more effects on bacterial/archaeal structure and composition. Bacteria were main hosts for specific ARGs and tnpA-02, while archaea carried multiple ARGs (cmx(A), adeA, etc.), and bacteria (24.24 %) contributed more to changes of ARGs than archaea (19.29 %). This study clarified the impacts of Cu on the proliferation and transmission of ARGs.
Assuntos
Cobre , Esgotos , Antibacterianos/farmacologia , Archaea/genética , Bactérias/genética , Cobre/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , Esgotos/microbiologia , Sulfonamidas/farmacologiaRESUMO
This study aimed to explore the impacts of ciprofloxacin (CIP, 0.05-40 mg/L) and copper (3 mg/L) combined pollution on nitrification, microbial community and antibiotic resistance genes (ARGs) in activated sludge system during stress- and post-effect periods. Higher CIP concentration inhibited nitrification and an average of 50% total nitrogen removal occurred under 40 mg/L of CIP pressure. The stress- and post-effects on bacterial diversity and structure were obviously distinct. Abundant genera were more sensitive to combined pollution than rare genera based on full-scale classification and conditionally rare or abundant taxa were keystone taxa in their interactions. Ammonia oxidation genes were inhibited under high CIP level, but some aerobic denitrifying bacteria (Thauera, Comamonas and Azoarcus) and key genes increased. 96 ARG subtypes were detected with complex positive relationships and their potential hosts (abundant-rare-functional genera) changed in two periods. This study highlights the different stress- and post-effects of combined pollution on activated sludge.
Assuntos
Ciprofloxacina , Esgotos , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Cobre , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , Esgotos/microbiologiaRESUMO
Effects of antibiotics (azithromycin, AZM, 1-40 mg/L) and quorum sensing inhibitor (QSI, 2(5H)-furanone, 1-40 mg/L) combined pollution with environmental concentration of copper on bacterial/archaeal community and antibiotic resistance genes (ARGs) in activated sludge system were explored. QSI inhibited nitrification more obviously than AZM. AZM and QSI were synergistic inhibitions on bacterial diversity, and AZM inhibited bacterial compositions more than QSI. While, QSI had more impacts on archaeal diversity/compositions. Less interactions among bacteria and archaea communities with Aquimonas as keystone genus. Functional differences in bacteria/archaea communities were little, and AZM had more effects on metabolism. AZM mainly affected nitrifying bacteria (Candidatus Nitrospira nitrificans and Nitrosomonas). Specific denitrifying bacteria were enriched by AZM (Brevundimonas, 1.76-31.69%) and QSI (Comamonas, 0.61-9.61%), respectively. AZM enriched ARGs more easily than QSI and they were antagonistic to proliferation of ARGs. Bacteria were main hosts of ARGs (macrolide-lincosamide-streptogramin B, other/efflux, etc.) and archaea (Methanosphaerula, Methanolobus) carried multiple ARGs.
Assuntos
Microbiota , Nitrificação , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Archaea/genética , Bactérias/metabolismo , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , Percepção de Quorum/genética , Esgotos/microbiologiaRESUMO
This study aimed to investigate the short-term response of abundant-rare genera and antibiotic resistance genes (ARGs) to azithromycin (AZM, 0.05-40 mg/L) and copper (1 mg/L) combined pollution in activated sludge nitrification system at low temperature. Nitrification was as expected inhibited in stress- and post-effects periods under AZM concentration higher than 5 mg/L. Abundant and rare taxa presented dissimilar responses based on full-scale classification. Conditionally rare or abundant taxa (CRAT) were keystone taxa. Relative abundance of ammonia-oxidizing archaea increased, and three aerobic denitrifying bacteria (Brevundimonas, Comamonas and Trichococcus) were enriched (from 9.83% to 68.91% in total). Ammonia nitrogen assimilating into Org-N and denitrification may be nitrogen pathways based on predict analysis. 29 ARGs were found with more co-occurrence patterns and high concentration of AZM (greater than 5 mg/L) caused their proliferation. Importantly, expect for some abundant taxa, rare taxa, potential pathogens and nitrogen-removal functional genera were the main potential hosts of ARGs.
Assuntos
Microbiota , Nitrificação , Antibacterianos/farmacologia , Azitromicina/farmacologia , Cobre/farmacologia , Desnitrificação , Resistência Microbiana a Medicamentos/genética , Laboratórios , Nitrogênio/análise , Esgotos , TemperaturaRESUMO
Histone deacetylase 6 (HDAC6) has emerged as a critical regulator of many cellular pathways in tumors due to its unique structure basis and abundant substrate types. Over the past few decades, the role played by HDAC6 inhibitors as anticancer agents has sparked great interest of biochemists worldwide. However, they were less reported for gastric cancer therapy. In this paper, with the help of bioisosteric replacement, in-house library screening, and lead optimization strategies, we designed, synthesized and verified a series of 1,3-diaryl-1,2,4-triazole-capped HDAC6 inhibitors with promising anti-gastric cancer activities. Amongst, compound 9r displayed the best inhibitory activity towards HDAC6 (IC50 = 30.6 nM), with 128-fold selectivity over HDAC1. Further BLI and CETSA assay proved the high affinity of 9r to HDAC6. In addition, 9r could dose-dependently upregulate the levels of acetylated α-tubulin, without significant effect on acetylated histone H3 in MGC803 cells. Besides, 9r exhibited potent antiproliferative effect on MGC803 cells, and promoted apoptosis and suppressed the metastasis without obvious toxicity, suggesting 9r would serve as a potential lead compound for the development of novel therapeutic agents of gastric cancer.