Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Environ Sci Technol ; 56(23): 16695-16706, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36399649

RESUMO

Semivolatile/intermediate-volatility organic compounds (S/IVOCs) from mobile sources are essential SOA contributors. However, few studies have comprehensively evaluated the SOA contributions of S/IVOCs by simultaneously comparing different parameterization schemes. This study used three SOA schemes in the CMAQ model with a measurement-based emission inventory to quantify the mobile source S/IVOC-induced SOA (MS-SI-SOA) for 2018 in China. Among different SOA schemes, SOA predicted by the 2D-VBS scheme was in the best agreement with observations, but there were still large deviations in a few regions. Three SOA schemes showed the peak value of annual average MS-SI-SOA was up to 0.6 ± 0.3 µg/m3. High concentrations of MS-SI-SOA were detected in autumn, while the notable relative contribution of MS-SI-SOA to total SOA was predicted in the coastal areas in summer, with a regional average contribution up to 20 ± 10% in Shanghai. MS-SI-SOA concentrations varied by up to 2 times among three SOA schemes, mainly due to the discrepancy in SOA precursor emissions and chemical reactions, suggesting that the differences between SOA schemes should also be considered in modeling studies. These findings identify the hotspot areas and periods for MS-SI-SOA, highlighting the importance of S/IVOC emission control in the future upgrading of emission standards.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Emissões de Veículos/análise , Aerossóis/análise , China , Estações do Ano , Poluentes Atmosféricos/análise
2.
Ecotoxicol Environ Saf ; 203: 110961, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888621

RESUMO

Cadmium (Cd), which seriously affects plant growth and crop production, is harmful to humans. Previous studies revealed ryegrass (Lolium multiflorum Lam.) exhibits Cd tolerance, and may be useful as a potential hyperaccumulator because of its wide distribution. In this study, the physiological and transcriptional responses of two ryegrass cultivars [i.e., high (LmHC) and low (LmLC) Cd tolerance] to Cd stress were investigated and compared. The Cd tolerance of LmHC was greater than that of LmLC at various Cd concentrations. The uptake of Evans blue dye revealed that Cd-induced root cell mortality was higher in LmLC than in LmHC after a 12-h Cd treatment. Furthermore, the content and influx rate of Cd in LmLC roots were greater than in LmHC roots under Cd stress conditions. The RNA sequencing and quantitative real-time PCR data indicated that the Cd transport regulatory genes (ABCG37, ABCB4, NRAMP4, and HMA5) were differentially expressed between the LmLC and LmHC roots. This expression-level diversity may contribute to the differences in the Cd accumulation and translocation between LmLC and LmHC. These findings may help clarify the physiological and molecular mechanisms underlying ryegrass responses to Cd toxicity. Additionally, ryegrass may be able to hyperaccumulate toxic heavy metals during the phytoremediation of contaminated soil.


Assuntos
Adaptação Biológica , Cádmio/metabolismo , Lolium/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Poluentes do Solo/metabolismo , Transcrição Gênica/efeitos dos fármacos , Adaptação Biológica/efeitos dos fármacos , Adaptação Biológica/genética , Biodegradação Ambiental , Cádmio/análise , Cádmio/toxicidade , Genes de Plantas , Lolium/química , Lolium/genética , Raízes de Plantas/química , Raízes de Plantas/genética , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
3.
Int J Mol Sci ; 21(11)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512879

RESUMO

Nitrogen (N) is an essential macronutrient for plant growth. Plants absorb and utilize N mainly in the form of nitrate (NO3-) or ammonium (NH4+). In this study, the nitrate transporter DsNRT3.1 (also known as the nitrate assimilation-related protein DsNAR2.1) was characterized from Dianthus spiculifolius. A quantitative PCR (qPCR) analysis showed that the DsNRT3.1 expression was induced by NO3-. Under N-starvation conditions, the transformed Arabidopsis seedlings expressing DsNRT3.1 had longer roots and a greater fresh weight than the wild type. Subcellular localization showed that DsNRT3.1 was mainly localized to the plasma membrane in Arabidopsis root hair cells. Non-invasive micro-test (NMT) monitoring showed that the root hairs of N-starved transformed Arabidopsis seedlings had a stronger NO3- and NH4+ influx than the wild-type seedlings, using with NO3- or NH4+ as the sole N source; contrastingly, transformed seedlings only had a stronger NO3- influx when NO3- and NH4+ were present simultaneously. In addition, the qPCR analysis showed that the expression of AtNRT2 genes (AtNRT2.1-2.6), and particularly of AtNRT2.5, in the transformed Arabidopsis differed from that in the wild type. Overall, our results suggest that the heterologous expression of DsNRT3.1 affects seedlings' growth by enhancing the NO3- and NH4+ uptake in N-starved Arabidopsis. This may be related to the differential expression of AtNRT2 genes.


Assuntos
Compostos de Amônio/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Nitratos/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte de Ânions/química , Arabidopsis/classificação , Proteínas de Arabidopsis/química , Transporte Biológico , Expressão Gênica , Transportadores de Nitrato , Filogenia , Plântula/genética , Plântula/metabolismo
4.
J Environ Manage ; 216: 49-61, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29357991

RESUMO

The feasibility of medical stone (MS) amendment as an innovative additive for dewatered fresh sewage sludge (DFSS) co-composting was assessed using a 130-L vessel-scale composter. To verify successful composting, five treatments were designed with four different dosages (2, 4, 6, and 10) % of MS with a 1:1 mixture (dry weight) of DFSS + wheat straw (WS). The WS was used as a bulking agent. A control without any amendment treatment was carried out for the purpose of comparison. For DFSS co-composting, the amendment with MS improved the mineralization efficiency and compost quality in terms of CO2 emissions, dehydrogenase enzyme (DE), electrical conductivity (EC), water-solubility, and total nutrients transformation. The DTPA-extractable Cu and Zn were also estimated to confirm the immobilization ability of the applied MS. Seed germination and plant growth tests were conducted to ensure the compost stability and phytotoxicity for Chinese cabbage (Brassica rapa chinensis L.) growth and biomass, as well as chlorophyll content. The results showed that during the bio-oxidative phase, DOC, DON, AP, NH4+-N, and NO3--N increased drastically in all the MS-blended treatments, except the application of 2% MS and the control treatment; significantly lower water-soluble nutrients were observed in the 2% MS and control treatments. A novel additive with 6-10% MS dosages considerably enhanced the organic matter conversion in the stable end-product (compost) and reduced the maturity period by two weeks compared to the 2% MS and control treatments. Consequently, the maturity parameters (e.g., EC, SGI, NH4+-N, DOC, and DON) confirmed that compost with 6-10% MS became more stable and mature within four weeks of DFSS co-composting. At the end of composting, significantly higher DTPA-extractable Cu and Zn contents were observed in the control treatment, and subsequently, in the very low application (10%) of MS. Higher MS dosage lowered the pH and EC to within the permissible limit compared to the control, while increased concentrations of water-soluble nutrients diminished the DTPA-extractable Cu and Zn contents. In addition, plant growth experiments demonstrated that the addition of compost with 150 kg ha-1 TKN improved the Chinese cabbage biomass and chlorophyll level. The highest dry weight biomass (2.78 ±â€¯0.02 g/pot) was obtained with 6% MS-blended compost while the maximum chlorophyll content was found with application of 4% MS compost (41.84 SPAD-unit) for Chinese cabbage. Therefore, 6-10% MS can be recommended to improve DFSS composting and to reduce the period to maturity by two weeks when considering its composting effect on Chinese cabbage growth, biomass yield, and chlorophyll level. However, amendment with 6% MS is a more economically feasible approach for DFSS co-composting.


Assuntos
Compostagem , Esgotos , Solo , Água
5.
Food Technol Biotechnol ; 56(1): 83-89, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29796000

RESUMO

The aim of the present study is to develop a good initial composting mix using a bacterial consortium and 2% lime for effective co-composting of food waste in a 60-litre in-vessel composter. In the experiment that lasted for 42 days, the food waste was first mixed with sawdust and 2% lime (by dry mass), then one of the reactors was inoculated with an enriched bacterial consortium, while the other served as control. The results show that inoculation of the enriched natural bacterial consortium effectively overcame the oil-laden co-composting mass in the composter and increased the rate of mineralization. In addition, CO2 evolution rate of (0.81±0.2) g/(kg·day), seed germination index of (105±3) %, extractable ammonium mass fraction of 305.78 mg/kg, C/N ratio of 16.18, pH=7.6 and electrical conductivity of 3.12 mS/cm clearly indicate that the compost was well matured and met the composting standard requirements. In contrast, control treatment exhibited a delayed thermophilic phase and did not mature after 42 days, as evidenced by the maturity parameters. Therefore, a good composting mix and potential bacterial inoculum to degrade the oil are essential for food waste co-composting systems.

6.
Ecotoxicol Environ Saf ; 145: 528-538, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28787614

RESUMO

The efficacy of tobacco biochar (TB) alone and in combined with mineral additives: Ca-hydroxide (CH), Ca-bentonite (CB) and natural zeolite (NZ), on immobilization of Pb, Cd, Cu and Zn, via reduce its (bio) availability to plants were investigated. The soils were collected from Tongguan contaminated (TG-C), Fengxian heavily contaminated (FX-HC) and Fengxian lightly contaminated (FX-LC) fields, Shaanxi province, China. The contaminated top soils were treated with low-cost amendments with an application rate of 1% and cultivated by Chinese cabbage (Brassica campestris L.) under greenhouse condition. Results showed that the all amendments (p < 0.05) potentially maximum reduced the DTPA-extractable Pb 82.53, Cd 31.52 and Cu 75.0% with TB + NZ in FX-LC soil, while in case of Zn 62.21% with TB + CH in FX-HC soil than control. The addition of amendments clearly increased dry biomass of Brassica campestris L. as compared with un-amended treatment (except TB + CH). Furthermore, these amendments markedly increased the uptake by plant shoot viz, Cd 10.51% with TB alone and 11.51% with TB + CB in FX-HC soil, similarly in FX-LC Cd increased 5.15% with TB + CH and 22.19% with TB + NZ, respectively. In same trend the Cu uptake in plant shoot was 19.30% with TB + CH in TG-C, whereas 43.90 TB + CH and 19.24% with TB + NZ in FX-LC soil. On the other hand as compared to control Cu accumulation in plant root was observed by TB, TB + CH and TB + CB treatments, while maximum uptake was 62.41% with TB + CH in TG-C soil. Consequently, except TB + CH treatment the chlorophyll content potentially increased in all amendment than control treatment, because of changes in soil EC, pH but increased CEC values after application of amendments. The results of this pot experiment are promising but they will further need to be confirmed with long-term field experiments.


Assuntos
Bentonita/química , Carvão Vegetal/química , Metais Pesados/análise , Nicotiana/química , Poluentes do Solo/análise , Zeolitas/química , Disponibilidade Biológica , Biomassa , Brassica/química , Brassica/crescimento & desenvolvimento , China , Solo/química
7.
Ecotoxicol Environ Saf ; 145: 313-323, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28756252

RESUMO

This explorative study was aimed to assess the efficiency of lime alone and in combined with additives to immobilize Pb, Cd, Cu and Zn in soil and reduce their phytoavailability for plant. A greenhouse pot experiment was performed by using low and heavily contaminated top soils viz. Tongguan contaminated (TG-C); Fengxian heavily contaminated (FX-HC) and Fengxian low contaminated (FX-LC). The contaminated soils were treated with lime (L) alone and in combined with Ca-bentonite (CB), Tobacco biochar (TB) and Zeolite (Z) at 1% and cultivated by Chinese cabbage (Brassica campestris L). Results revealed that all amendments (p< 0.05) significantly reduced the DTPA-extractable Pb 97.33, Cd 68.06 and Cu 91.11% with L+TB, L+CB, L+Z in FX-LC soil and Zn 87.12% respectively, with L+CB into TG-C soil. Consequently, the application of lime alone and in combined with additives were drastically decreased the dry biomass yield of Brassica campestris L. as compared with control. Thus, these feasible amendments potentially maximum reduced the uptake by plant shoots upto Pb 53.47 and Zn 67.93% with L+Z and L+TB in FX-LC soil, while Cd 68.58 and Cu 60.29% with L+TB, L+CB in TG-C soil but Cu uptake in plant shoot was observed 27.26% and 30.17% amended with L+TB and L+Z in FX-HC and FX-LC soils. On the other hand, these amendments were effectively reduced the potentially toxic metals (PTMs) in roots upto Pb77.77% L alone in FX-HC, Cd 96.76% with L+TB in TG-C, while, Cu 66.70 and Zn 60.18% with L+Z in FX-LC. Meanwhile, all amendments were responsible for increasing soil pH and CEC but decreased soils EC level. Based on this result, these feasible soil amendments were recommended for long term-study under field condition to see the response of another hyper accumulator crop.


Assuntos
Compostos de Cálcio/química , Chumbo/análise , Óxidos/química , Poluentes do Solo/análise , Zinco/análise , Biomassa , Brassica/química , Brassica/crescimento & desenvolvimento , Carvão Vegetal/química , Metalurgia , Metais Pesados/análise , Raízes de Plantas/química , Brotos de Planta/química , Brotos de Planta/crescimento & desenvolvimento , Solo/química
8.
J Ind Microbiol Biotechnol ; 41(8): 1297-303, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24907944

RESUMO

Coenzyme Q (CoQ) is a medically valuable compound and a high yielding strain for CoQ will have several benefits for the industrial production of CoQ. To increase the CoQ(8) content of E. coli, we blocked the pathway for the synthesis of menaquinone by deleting the menA gene. The blocking of menaquinone pathway increased the CoQ(8) content by 81 % in E. coli (ΔmenA). To study the CoQ producing potential of E. coli, we employed previous known increasing strategies for systematic metabolic engineering. These include the supplementation with substrate precursors and the co-expression of rate-limiting genes. The co-expression of dxs-ubiA and the supplementation with substrate precursors such as pyruvate (PYR) and parahydroxybenzoic acid (pHBA) increased the content of CoQ(8) in E. coli (ΔmenA) by 125 and 59 %, respectively. Moreover, a 180 % increase in the CoQ(8) content in E. coli (ΔmenA) was realized by the combination of the co-expression of dxs-ubiA and the supplementation with PYR and pHBA. All in all, CoQ(8) content in E. coli increased 4.06 times by blocking the menaquinone pathway, dxs-ubiA co-expression and the addition of sodium pyruvate and parahydroxybenzoic acid to the medium. Results suggested a synergistic effect among different metabolic engineering strategies.


Assuntos
Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Microbiologia Industrial/métodos , Engenharia Metabólica/métodos , Ubiquinona/biossíntese , Alquil e Aril Transferases/genética , Proteínas de Escherichia coli/genética , Parabenos , Plasmídeos/genética , Vitamina K 2/metabolismo
9.
PNAS Nexus ; 3(1): pgad430, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38145246

RESUMO

Estimating shipping nitrogen oxides (NOx) emissions and their associated ambient NO2 impacts is a complex and time-consuming task. In this study, a satellite-based ship pollution estimation model (SAT-SHIP) is developed to estimate regional shipping NOx emissions and their contribution to ambient NO2 concentrations in China. Unlike the traditional bottom-up approach, SAT-SHIP employs satellite observations with varying wind patterns to improve the top-down emission inversion methods for individual sectors amidst irregular emission plume signals. Through SAT-SHIP, shipping NOx emissions for 17 ports in China are estimated. The results show that SAT-SHIP performed comparably with the bottom-up approach, with an R2 value of 0.8. Additionally, SAT-SHIP reveals that the shipping sector in port areas contributes ∼21 and 11% to NO2 concentrations in the Yangtze River Delta and Pearl River Delta areas of China, respectively, which is consistent with the results from chemical transportation model simulations. This approach has practical implications for policymakers seeking to identify pollution sources and develop effective strategies to mitigate air pollution.

10.
J Hazard Mater ; 469: 133928, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38447368

RESUMO

How did the motorcycle emissions evolve during the economic development in China? To address data gaps, this study firstly measured the volatile organic compound (VOC) and intermediate-volatility organic compound (IVOC) emissions from motorcycles. The results confirmed that the emission control of motorcycles, especially small-displacement motorcycles, significantly lagged behind other gasoline-powered vehicles. For the China IV motorcycles, the average VOC and IVOC emission factors (EFs) were 2.74 and 7.78 times higher than the China V-VI light-duty gasoline vehicles, respectively. The notable high IVOC emissions were attributed to a dual influence from gasoline and lubricating oil. Furthermore, based on the complete EF dataset and economy-related activity data, a county-level emission inventory was developed in China. Motorcycle VOC and IVOC emissions changed from 2536.48 Gg and 197.19 Gg in 2006 to 594.21 Gg and 12.66 Gg in 2020, respectively. The absence of motorcycle IVOC emissions in the existed vehicular inventories led to an underestimation of up to 20%. Across the 15 years, the motorcycle VOC and IVOC emission hotspots were concentrated in the undeveloped regions, with the rural emissions reaching 5.81-10.14 times those of the urban emissions. This study provides the first-hand and close-to-realistic data to support motorcycle emission management and accurate air quality simulations.

11.
Environ Pollut ; : 124991, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39303936

RESUMO

In recent years, the precision of exposure assessment methods has been rapidly improved and more widely adopted in epidemiological studies. However, such methodological advancement has introduced additional heterogeneity among studies. The precision of exposure assessment has become a potential confounding factors in meta-analyses, whose impacts on effect calculation remain unclear. To explore, we conducted a meta-analysis to integrate the long- and short-term exposure effects of PM2.5, NO2, and O3 on all-cause, cardiovascular, and respiratory mortality in the Chinese population. Literature was identified through Web of Science, PubMed, Scopus, and China National Knowledge Infrastructure before August 28, 2023. Sub-group analyses were performed to quantify the impact of exposure assessment precisions and pollution levels on the estimated risk. Studies achieving merely city-level resolution and population exposure are classified as using traditional assessment methods, while those achieving sub-kilometer simulations and individual exposure are considered finer assessment methods. Using finer assessment methods, the RR (under 10 µg/m3 increment, with 95% confidence intervals) for long-term NO2 exposure to all-cause mortality was 1.13 (1.05-1.23), significantly higher (p-value=0.01) than the traditional assessment result of 1.02 (1.00-1.03). Similar trends were observed for long-term PM2.5 and short-term NO2 exposure. A decrease in short-term PM2.5 levels led to an increase in the RR for all-cause and cardiovascular mortality, from 1.0035 (1.0016-1.0053) and 1.0051 (1.0021-1.0081) to 1.0055 (1.0035-1.0075) and 1.0086 (1.0061-1.0111), with weak between-group significance (p-value=0.13 and 0.09), respectively. Based on the quantitative analysis and literature information, we summarized four key factors influencing exposure assessment precision under a conceptualized framework: pollution simulation resolution, subject granularity, micro-environment classification, and pollution levels. Our meta-analysis highlighted the urgency to improve pollution simulation resolution, and we provide insights for researchers, policy-makers and the public. By integrating the most up-to-date epidemiological research, our study has the potential to provide systematic evidence and motivation for environmental management.

12.
Environ Sci Ecotechnol ; 14: 100226, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36479160

RESUMO

Recent increases in emissions from freight transport have caused strong concerns about air quality in Pakistan, following the rapid development of projects related to the China-Pakistan Economic Corridor (CPEC). This study reported the first measurements of on-road truck emissions in Pakistan and investigated their dependence on altitude along CPEC routes. Emissions from 70 trucks were measured on CPEC highways located in Islamabad (540 m above sea level), Sost (2800 m above sea level), and at the Khunjerab Pass (4693 m above sea level). Calculated emission factors for carbon monoxide, hydrocarbons, and nitrogen oxides from heavy-duty trucks in Islamabad were 12.94 ± 1.46, 15.21 ± 1.67, and 10.69 ± 1.34 g km-1 (95% confidence level), respectively, for pre-Pak-II trucks, and 12.75 ± 2.80, 14.24 ± 3.53, and 10.24 ± 2.34 g km-1 (95% confidence level), respectively, for Pak-II trucks, representing 2-20 times higher values than the emission standards in Pakistan and India. An altitude increase of approximately 4000 m, with the associated changes in meteorology and fleet characteristics, induced an average increase of 103.6%, 86.3%, 124.5%, and 133.6% in the emission factors of carbon monoxide, hydrocarbons, nitrogen oxides, and carbon dioxide, respectively. Moreover, on-road emissions along the CPEC were mainly influenced by truck types. This study will support the budget evaluation of transport emissions from the CPEC trade fleet.

13.
Commun Earth Environ ; 4: 451, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38130441

RESUMO

With the decreasing regional-transported levels, the health risk assessment derived from fine particulate matter (PM2.5) has become insufficient to reflect the contribution of local source heterogeneity to the exposure differences. Here, we combined the both ultra-high-resolution PM2.5 concentration with population distribution to provide the personal daily PM2.5 internal dose considering the indoor/outdoor exposure difference. A 30-m PM2.5 assimilating method was developed fusing multiple auxiliary predictors, achieving higher accuracy (R2 = 0.78-0.82) than the chemical transport model outputs without any post-simulation data-oriented enhancement (R2 = 0.31-0.64). Weekly difference was identified from hourly mobile signaling data in 30-m resolution population distribution. The population-weighted ambient PM2.5 concentrations range among districts but fail to reflect exposure differences. Derived from the indoor/outdoor ratio, the average indoor PM2.5 concentration was 26.5 µg/m3. The internal dose based on the assimilated indoor/outdoor PM2.5 concentration shows high exposure diversity among sub-groups, and the attributed mortality increased by 24.0% than the coarser unassimilated model.

14.
Sci Total Environ ; 882: 163544, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37076011

RESUMO

How would the organic gas emission inventories of future urban vehicles change with new features of advanced technology cars? Here, volatile organic compounds (VOCs) and intermediate volatile organic compounds (IVOCs) from a fleet of Chinese light-duty gasoline vehicles (LDGVs) were characterized by chassis dynamometer experiments to grasp the key factors affecting future inventory accuracy. Subsequently, the VOC and IVOC emissions of LDGVs in Beijing, China, from 2020 to 2035, were calculated and the spatial-temporal variations were recognized under a scenario of fleet renewal. With the tightening of emission standards (ESs), cold start contributed a larger fraction of the total unified cycle VOC emissions due to the imbalanced emission reductions between operating conditions. It took 757.47 ± 337.75 km of hot running to equal one cold-start VOC emission for the latest certified vehicles. Therefore, the future tailpipe VOC emissions would be highly dependent on discrete cold start events rather than traffic flows. By contrast, the equivalent distance was shorter and more stable for IVOCs, with an average of 8.69 ± 4.59 km across the ESs, suggesting insufficient controls. Furthermore, there were log-linear relationships between temperatures and cold-start emissions, and the gasoline direct-injection vehicles performed better adaptability under low temperatures. In the updated emission inventories, the VOC emissions were more effectively reduced than the IVOC emissions. The start emissions of VOCs were estimated to be increasingly dominant, especially in wintertime. By winter 2035, the contribution of VOC start emissions could reach 98.98 % in Beijing, while the fraction of IVOC start emissions would decrease to 59.23 %. Spatially allocation showed that the high emission regions of tailpipe organic gases from LDGVs have transferred from road networks to regions of intense human activities. Our results provide new insights into tailpipe organic gas emissions of gasoline vehicles, and can support future emission inventories and refined assessment of air quality and human health risk.

15.
Innovation (Camb) ; 4(6): 100517, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37822762

RESUMO

Ever-increasing ambient ozone (O3) pollution in China has been exacerbating cardiopulmonary premature deaths. However, the urban-rural exposure inequity has seldom been explored. Here, we assess population-scale O3 exposure and mortality burdens between 1990 and 2019 based on integrated pollution tracking and epidemiological evidence. We find Chinese population have been suffering from climbing O3 exposure by 4.3 ± 2.8 ppb per decade as a result of rapid urbanization and growing prosperity of socioeconomic activities. Rural residents are broadly exposed to 9.8 ± 4.1 ppb higher ambient O3 than the adjacent urban citizens, and thus urbanization-oriented migration compromises the exposure-associated mortality on total population. Cardiopulmonary excess premature deaths attributable to long-term O3 exposure, 373,500 (95% uncertainty interval [UI]: 240,600-510,900) in 2019, is underestimated in previous studies due to ignorance of cardiovascular causes. Future O3 pollution policy should focus more on rural population who are facing an aggravating threat of mortality risks to ameliorate environmental health injustice.

16.
Sci Total Environ ; 851(Pt 2): 158312, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041606

RESUMO

Intermediate volatility organic compounds (IVOCs) from mobile sources contribute significantly to secondary organic aerosol (SOA) formation. However, the assessments of IVOC emissions remain considerably uncertain due to the lack of localized measured data and detailed emission source classifications. This study established a comprehensive database of IVOC emission factors (EFs) for mobile sources based on the diversified measured EFs and correlations with hydrocarbons. The provincial-level IVOC emission inventories over China were further established by integrating activity data of various mobile sources. The national mobile source IVOC emissions were 507.5 Gg in 2017. The IVOC emissions of on-road and non-road mobile sources were roughly the same. Trucks and non-road construction machineries were the major contributors to IVOC emissions, accounting for >66 % of the total. The IVOC emission characteristics and spatial distributions from various mobile sources varied significantly with different types and usages. The IVOC emission inventories with detailed classifications can be used to evaluate emission control policies for mobile sources. Incorporating localized measured data would be beneficial for a better understanding for the atmospheric impacts of mobile source IVOC emissions.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Emissões de Veículos/análise , Aerossóis/análise , Compostos Orgânicos Voláteis/análise , Veículos Automotores , Hidrocarbonetos , China , Poluentes Atmosféricos/análise
17.
Sci Total Environ ; 813: 152655, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34954164

RESUMO

The growing of vehicle population aggravates air pollution and threatens human health. In this study, based on the refined whole-process vehicle emission inventory considering volatile organic compounds (VOCs) evaporation emission, the CAMx model was applied to comprehensively quantify the impacts of the vehicle sector on the annual and seasonal concentrations of PM2.5 and O3 in China. Also, the health risks caused by long-term exposure to PM2.5 and O3 were evaluated. The model results showed that vehicle emission was an important source of severe O3 pollution in summer, with a contribution of more than 30% in most parts of China, but not an important source of serious PM2.5 pollution in winter, with a contribution of less than 20% in heavily polluted regions in China. Compared to tailpipe emission, vehicle VOCs evaporation emission led to increases of 25% and 47% to sectoral contribution to PM2.5 and O3. Health risk assessment results showed that attributable deaths caused by long-term exposure to PM2.5 and O3 were 975,029 and 46,043 in 2018, to which vehicle emission contributed approximately 12.5% and 22.2%, respectively.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental , Humanos , Material Particulado/análise , Emissões de Veículos/análise
18.
J Hazard Mater ; 435: 128979, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35472544

RESUMO

Identification of air toxics emitted from light-duty gasoline vehicles (LDGVs) is expected to better protect human health. Here, the volatile organic compound (VOC) and intermediate VOC (IVOC) emissions in the high-emitted start stages were measured on a chassis dynamometer under normal and extreme temperatures for China 6 LDGVs. Low temperature enhanced the emission rates (ERs) of both VOCs and IVOCs. The VOC ERs were averaged 5.19 ± 2.74 times higher when the temperature dropped from 23 °C to 0 °C, and IVOCs were less sensitive to temperature change with an enlargement of 2.27 ± 0.19 times. Aromatics (46.75 ± 2.83%) and alkanes (18.46 ± 1.21%) dominated the cold start VOC emissions under normal temperature, which was quite different from hot running emission profiles. From the perspective of emission inventories, changes in the speciated composition of VOCs and IVOCs were less important than that in the actual magnitude of ERs under cold conditions. However, changes in the ERs and emission profiles were equally important at high temperatures. Furthermore, high time-resolved measurements revealed that low temperature enhanced both the emission peak and peak duration of fuel components and incomplete combustion products during cold start, while high temperature only increased the peak concentration of fuel components.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Gasolina/análise , Humanos , Veículos Automotores , Temperatura , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
19.
iScience ; 24(8): 102854, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34381978

RESUMO

Safety issue of lithium-ion batteries (LIBs) is always a concern. We have studied the inhabitation on thermal runaway (TR) and propagation of 18,650 LIBs in an enclosed space systematically. LIBs at 70% state of charge are chosen for testing. Four fire extinguishing agents are applied on LIB arrays for 20 s, and the inhibiting effects are different. The cooling efficiency varies with the surface temperatures of LIBs. Water spray has the highest cooling efficiency and inhibits the TR propagation among LIB arrays successfully. Three LIBs undergo TR for the releasing of ABC ultrafine dry powder. BC ultrafine dry powder and Novec 1230 are failed to inhibit the TR propagation. Nevertheless, Novec 1230 shows the best on inhibiting fire occurring and the generation of toxic gas. Generally, this study provides valuable information for the choice of fire extinguishing agents.

20.
J Hazard Mater ; 419: 126431, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34186426

RESUMO

Organosulfates (OSs) are an important component of atmospheric organic aerosol (OA) and are widespread in various environments. However, the OSs generated from anthropogenic emissions are poorly understood. In this study, the molecular compositions of OSs from atmospheric PM2.5 samples collected during a winter measurement campaign (SEISO-Bohai) at Jingtang Harbor were characterized via ultrahigh resolution mass spectrometry (UHRMS). The changes of port OS compositions were observed in episodes of complete haze pollution. As the pollution aggravated, the relative abundances of OSs were apparently increased, and the molecule compositions became more complex, primarily driven by the oxidation and fragmentation processes. Potential OS precursors from traffic emissions were identified based on an optimized "OS precursor map" developed in the previous study. OSs characterized by high molecular weights and low degrees of both unsaturation and oxidization were suggested to mainly derive from secondary reactions of intermediate volatile organic compounds (IVOCs) emitted by traffic sources. These OSs were primarily detected in clean-day samples, followed by decreasing with the pollution process. In addition, our study also finds that ship emissions may further facilitated OS productions under haze pollution conditions.


Assuntos
Compostos Orgânicos Voláteis , Aerossóis/análise , Poeira , Espectrometria de Massas , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA