Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396983

RESUMO

Oats (Avena sativa) are an important cereal crop and cool-season forage worldwide. Heat shock protein 90 (HSP90) is a protein ubiquitously expressed in response to heat stress in almost all plants. To date, the HSP90 gene family has not been comprehensively reported in oats. Herein, we have identified twenty HSP90 genes in oats and elucidated their evolutionary pathways and responses to five abiotic stresses. The gene structure and motif analyses demonstrated consistency across the phylogenetic tree branches, and the groups exhibited relative structural conservation. Additionally, we identified ten pairs of segmentally duplicated genes in oats. Interspecies synteny analysis and orthologous gene identification indicated that oats share a significant number of orthologous genes with their ancestral species; this implies that the expansion of the oat HSP90 gene family may have occurred through oat polyploidization and large fragment duplication. The analysis of cis-acting elements revealed their influential role in the expression pattern of HSP90 genes under abiotic stresses. Analysis of oat gene expression under high-temperature, salt, cadmium (Cd), polyethylene glycol (PEG), and abscisic acid (ABA) stresses demonstrated that most AsHSP90 genes were significantly up-regulated by heat stress, particularly AsHSP90-7, AsHSP90-8, and AsHSP90-9. This study offers new insights into the amplification and evolutionary processes of the AsHSP90 protein, as well as its potential role in response to abiotic stresses. Furthermore, it lays the groundwork for understanding oat adaptation to abiotic stress, contributing to research and applications in plant breeding.


Assuntos
Avena , Grão Comestível , Avena/genética , Avena/metabolismo , Grão Comestível/genética , Filogenia , Genoma de Planta , Melhoramento Vegetal , Estresse Fisiológico/genética , Proteínas de Choque Térmico HSP90/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
2.
Opt Express ; 31(2): 1330-1339, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785170

RESUMO

Airy beams, accelerating optical beams with exotic properties of self-bending, self-healing and non-diffraction, are essential for a wide range of photonics applications. Recently, metasurfaces have provided an efficient platform for generating desired Airy beams within a thin thickness, but they suffer from the narrow bandwidth, especially for two-dimensional (2D) Airy beams. Here, we propose an amplitude-tailorable polarization-converting metasurface to enable ultra-wideband 2D Airy beam generation. The amplitude and phase profiles for the 2D Airy beam can be realized by tuning only the orientation of the multi-resonant meta-atom, which can operate in the range of 6.6 GHz to 23.7 GHz, or fractional bandwidth of 113%. An exemplary prototype is measured to validate the design principle, which is in agreement with the simulation results. The proposed method holds great promise for wavefront shaping, and may facilitate the uses of Airy beam for practical applications.

3.
Opt Express ; 31(14): 23294-23308, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475417

RESUMO

In this paper, an actively tunable rasorber with broadband RCS reduction and low infrared emissivity is proposed. The rasorber can achieve flexible control of the peak of the transmission frequency and make the platform invisible in multiple spectrum. Based on the combination of varactor diodes and bandpass frequency-selective surface (FSS), the transmission window can be continuously tuned from 1.8 to 4.5 GHz. The designed rasorber has more than 10 dB RCS reduction from 5.4 to 14.1 GHz. Furthermore, an infrared low emissivity layer based on ITO resistance film is added above the rasorber, and the average infrared emissivity of the measured surface is 0.33. The experimental and simulation results are in good agreement. This work is expected to be applied to frequency hopping secure communication and ultra-wideband, multi-spectrum stealth.

4.
Opt Express ; 31(16): 25613-25624, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710443

RESUMO

Polarization manipulation is a key issue in electromagnetic (EM) research. Research on 90° polarization rotators and circularly-polarized wave generators has been widely conducted. In this study, a polarization conversion metasurface that can shift one linearly-polarized EM wave into multi-polarization outgoing waves at certain frequencies is demonstrated, including co-, cross-, left-hand, and right-hand circular-polarization components. The surface was made of periodically arranged chiral meta-atoms. The polarization manipulation method is based on the independent control of phase and magnitude, in which the phase control is based on the Berry-phase theory of linearly-polarized EM waves, while the magnitude control is based on the cavity mode theory of the microstrip structure. Both eigenmode analysis (EMA) and characteristic mode analysis (CMA) were utilized for magnitude control, which was further verified by the surface current distribution. Finally, the metasurface was fabricated and measured, showing good agreement between the measured and simulated results. This research proposed what we believe to be a novel polarization method, which can be potentially applied in polarization manipulation, EM radiation, filters, wireless sensors, etc., over a frequency range from optics to microwave bands.

5.
Opt Express ; 31(18): 28979-28986, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710706

RESUMO

Recently, reconfigurable polarization-manipulation metasurfaces controlled with active components have gained widespread interest due to their adaptability, compact configuration, and low cost. However, due to the inherent non-negligible ohmic loss, the output energy of these tunable metasurfaces is typically diminished, particularly in the microwave region. To surmount the loss problem, herein, we propose an active polarization-converting metasurface with non-reciprocal polarization responses that is integrated with amplifying transistors. In addition, we provide a design strategy for a polarizer that is insensitive to polarization and has energy amplification capabilities. Experiments are conducted in the microwave region, and amplification of the polarization-converting behaviors is observed around 3.95 GHz. The proposed metasurface is prospective for applications in future wireless communication systems, such as spatial isolation, signal enhancement, and electromagnetic environment shaping.

6.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674780

RESUMO

Low temperature is an important limiting factor in the environment that affects the distribution, growth and development of warm-season grasses. Transcriptome sequencing has been widely used to mine candidate genes under low-temperature stress and other abiotic stresses. However, the molecular mechanism of centipedegrass in response to low-temperature stress was rarely reported. To understand the molecular mechanism of centipedegrass in response to low-temperature stress, we measured physiological indicators and sequenced the transcriptome of centipedegrass under different stress durations. Under cold stress, the SS content and APX activity of centipedegrass increased while the SOD activity decreased; the CAT activity, POD activity and flavonoid content first increased and then decreased; and the GSH-Px activity first decreased and then increased. Using full-length transcriptome and second-generation sequencing, we obtained 38.76 G subreads. These reads were integrated into 177,178 isoforms, and 885 differentially expressed transcripts were obtained. The expression of AUX_IAA and WRKY transcription factors and HSF transcription-influencing factors increased during cold stress. Through KEGG enrichment analysis, we determined that arginine and proline metabolism, plant circadian rhythm, plant hormone signal transduction and the flavonoid biosynthesis pathways played important roles in the cold stress resistance of centipedegrass. In addition, by using weighted gene coexpression network analysis (WGCNA), we determined that the turquoise module was significantly correlated with SS content and APX activity, while the blue module was significantly negatively correlated with POD and CAT activity. This paper is the first to report the response of centipedegrass to cold stress at the transcriptome level. Our results help to clarify the molecular mechanisms underlying the cold tolerance of warm-season grasses.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Resposta ao Choque Frio/genética , Poaceae/genética , Poaceae/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura Baixa
7.
BMC Plant Biol ; 22(1): 231, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513782

RESUMO

The primary approach for variety distinction in Italian ryegrass is currently the DUS (distinctness, uniformity and stability) test based on phenotypic traits. Considering the diverse genetic background within the population and the complexity of the environment, however, it is challenging to accurately distinguish varieties based on DUS criteria alone. In this study, we proposed the application of high-throughput RAD-seq to distinguish 11 Italian ryegrass varieties with three bulks of 50 individuals per variety. Our findings revealed significant differences among the 11 tested varieties. The PCA, DAPC and STRUCTURE analysis indicated a heterogeneous genetic background for all of them, and the AMOVA analysis also showed large genetic variance among these varieties (ΦST = 0.373), which were clearly distinguished based on phylogenetic analysis. Further nucleotide diversity (Pi) analysis showed that the variety 'Changjiang No.2' had the best intra-variety consistency among 11 tested varieties. Our findings suggest that the RAD-seq could be an effectively alternative method for the variety distinction of Italian ryegrass, as well as a potential tool for open-pollinated varieties (OPVs) of other allogamous species.


Assuntos
Lolium , Itália , Lolium/genética , Fenótipo , Filogenia
8.
Opt Express ; 30(19): 33613-33626, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242392

RESUMO

The independent tailoring of electromagnetic waves with different circular-polarized (CP) wavefront in both reflection and transmission channels is of broad scientific and technical interest, offering ultimate degrees of freedom in designing advanced devices with the merits of functionality integration and spatial exploitation. However, most metasurfaces only provide dependent wavefront control of dual-helicity in a single channel, restricting their applications to limited practical scenarios. Herein, we propose a full-space dual-helicity decoupled metasurface and apply it to assemble a multi-folded reflective antenna (MFRA) in the microwave regime. A multilayered chiral meta-atom is designed and optimized to reflect a particular helical wave while allowing the orthogonal helical wave to penetrate through, with simultaneous full span of phase modulations in both channels. When a uniform reflection and a hyperbolic transmission phase profile is imposed simultaneously on the metasurface in a polarization-selective manner, it can be engineered to conduct specular reflection for one helical wave and convergent transmission of the other helical wave. Combining the proposed metasurface with a metallic plate as a bottom reflector and an integrated microstrip patch antenna in the center of metasurface as a feed, a MFRA is realized with a low profile, high efficiency, and high polarization purity in a broad frequency band. The proposed design method of the dual-helicity decoupled metasurface and its antenna application provide opportunities for high-performance functional devices, promising more potential in future communication and detection systems.

9.
Appl Opt ; 61(35): 10538-10547, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36607116

RESUMO

Thermochromism film can automatically adjust its emittance without additional energy consumption, which shows great prospect in the application of spacecraft thermal control. However, it is still challenging to achieve a large infrared emittance at a high temperature and emittance tunability of the thermochromism film. In this work, we propose a V O 2 particle-based intelligent metasurface for spacecraft thermal control, which consists of a square lattice array of hollow spheroidal V O 2 particles on Au substrate. The metasurface with a V O 2 particle having a large aspect ratio (∼10) displays perfect emission throughout the entire mid-infrared spectral range. The emittance tunability can exceed 0.63 with total normal emittance of 0.85. The underlying mechanisms involved in the metasurface are attributed to particle-dependent scattering, by which the infrared emittance is dramatically enhanced for the metallic state and restricted for the dielectric state. In addition, the infrared emittance at a high temperature and emittance tunability of the metasurface remain large for incident angles up to 60°. To the best of our knowledge, this work proposes the first thermochromism film structure with perfect infrared emission, which could accelerate the development and practical application of the thermochromic film in the field of spacecraft.

10.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562863

RESUMO

Soil salinization has become a serious challenge to modern agriculture worldwide. The purpose of the study was to reveal salt tolerance induced by spermine (Spm) associated with alterations in water and redox homeostasis, photosynthetic performance, and global metabolites reprogramming based on analyses of physiological responses and metabolomics in creeping bentgrass (Agrostis stolonifera). Plants pretreated with or without 0.5 mM Spm were subjected to salt stress induced by NaCl for 25 days in controlled growth chambers. Results showed that a prolonged period of salt stress caused a great deal of sodium (Na) accumulation, water loss, photoinhibition, and oxidative damage to plants. However, exogenous application of Spm significantly improved endogenous spermidine (Spd) and Spm contents, followed by significant enhancement of osmotic adjustment (OA), photosynthesis, and antioxidant capacity in leaves under salt stress. The Spm inhibited salt-induced Na accumulation but did not affect potassium (K) content. The analysis of metabolomics demonstrated that the Spm increased intermediate metabolites of γ-aminobutyric acid (GABA) shunt (GABA, glutamic acid, and alanine) and tricarboxylic acid (TCA) cycle (aconitic acid) under salt stress. In addition, the Spm also up-regulated the accumulation of multiple amino acids (glutamine, valine, isoleucine, methionine, serine, lysine, tyrosine, phenylalanine, and tryptophan), sugars (mannose, fructose, sucrose-6-phosphate, tagatose, and cellobiose), organic acid (gallic acid), and other metabolites (glycerol) in response to salt stress. These metabolites played important roles in OA, energy metabolism, signal transduction, and antioxidant defense under salt stress. More importantly, the Spm enhanced GABA shunt and the TCA cycle for energy supply in leaves. Current findings provide new evidence about the regulatory roles of the Spm in alleviating salt damage to plants associated with global metabolites reprogramming and metabolic homeostasis.


Assuntos
Agrostis , Agrostis/fisiologia , Antioxidantes/metabolismo , Tolerância ao Sal , Espermina/metabolismo , Água/metabolismo , Ácido gama-Aminobutírico/metabolismo
11.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36613896

RESUMO

Drought is one of the most important factors affecting plant growth and production due to ongoing global climate change. Elymus sibiricus has been widely applied for ecological restoration and reseeding of degraded grassland in the Qinghai-Tibetan Plateau (QTP) because of its strong adaptability to barren, salted, and drought soils. To explore the mechanism of drought resistance in E. sibiricus, drought-tolerant and drought-sensitive genotypes of E. sibiricus were used in metabolomic studies under simulated long-term and short-term drought stress. A total of 1091 metabolites were detected, among which, 27 DMs were considered to be the key metabolites for drought resistance of E. sibiricus in weighted gene co-expression network analysis (WGCNA). Ten metabolites, including 3-amino-2-methylpropanoic acid, coniferin, R-aminobutyrate, and so on, and 12 metabolites, including L-Proline, L-histidine, N-acetylglycine, and so on, showed differential accumulation patterns under short-term and long-term drought stress, respectively, and thus, could be used as biomarkers for drought-tolerant and drought-sensitive E. sibiricus. In addition, different metabolic accumulation patterns and different drought response mechanisms were also found in drought-tolerant and drought-sensitive genotypes of E. sibiricus. Finally, we constructed metabolic pathways and metabolic patterns for the two genotypes. This metabolomic study on the drought stress response of E. sibiricus can provide resources and a reference for the breeding of new drought-tolerant cultivars of E. sibiricus.


Assuntos
Elymus , Elymus/genética , Resistência à Seca , Melhoramento Vegetal , Perfilação da Expressão Gênica , Secas
12.
BMC Plant Biol ; 21(1): 264, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098903

RESUMO

BACKGROUND: Prairie grass (Bromus catharticus) is a typical cool-season forage crop with high biomass production and fast growth rate during winter and spring. However, its genetic research and breeding has remained stagnant due to limited available genomic resources. The aim of this study was to generate large-scale genomic data using high-throughput transcriptome sequencing, and perform a preliminary validation of EST-SSR markers of B. catharticus. RESULTS: Eleven tissue samples including seeds, leaves, and stems were collected from a new high-yield strain of prairie grass BCS1103. A total of 257,773 unigenes were obtained, of which 193,082 (74.90%) were annotated. Comparison analysis between tissues identified 1803, 3030, and 1570 genes specifically and highly expressed in seed, leaf, and stem, respectively. A total of 37,288 EST-SSRs were identified from unigene sequences, and more than 80,000 primer pairs were designed. We synthesized 420 primer pairs and selected 52 ones with high polymorphisms to estimate genetic diversity and population structure in 24 B. catharticus accessions worldwide. Despite low diversity indicated by an average genetic distance of 0.364, the accessions from South America and Asia and wild accessions showed higher genetic diversity. Moreover, South American accessions showed a pure ancestry, while Asian accessions demonstrated mixed internal relationships, which indicated a different probability of gene flow. Phylogenetic analysis clustered the studied accessions into four clades, being consistent with phenotypic clustering results. Finally, Mantel analysis suggested the total phenotypic variation was mostly contributed by genetic component. Stem diameter, plant height, leaf width, and biomass yield were significantly correlated with genetic data (r > 0.6, P < 0.001), and might be used in the future selection and breeding. CONCLUSION: A genomic resource was generated that could benefit genetic and taxonomic studies, as well as molecular breeding for B. catharticus and its relatives in the future.


Assuntos
Bromus/genética , Perfilação da Expressão Gênica , Genes de Plantas , Proteínas de Plantas/genética , Transcrição Gênica , Etiquetas de Sequências Expressas , Marcadores Genéticos , Repetições de Microssatélites , Proteínas de Plantas/metabolismo
13.
Opt Express ; 29(10): 15678-15688, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985264

RESUMO

Achieving multiple electromagnetic (EM) functionalities on a shared aperture in dual frequency bands is crucial for many applications; however, existing dual-band metasurfaces are affected by limited channels or narrow bandwidths. Herein, we propose a reflective coding metasurface that empowers four independent EM functionalities in quad-polarization channels in two wide frequency bands. By integrating quasi-I-shaped and cross-shaped metastructures, the meta-atom can feature independent phase modulation for two orthogonally linear and two decoupled circular polarizations at low and high frequencies, respectively. To validate the proposed metasurface, a multifunctional metadevice is designed that integrates beam deflection, diffuse scattering, and vortex beam generation. Both experimental and simulation results indicate distinct wavefront tailoring in each channel. The proposed multi-functional metasurface with low cross-talk and independent phase modulation depending on frequencies and polarizations may unlock the metasurfaces' potentials for complete wavefront control in EM function integration, multiple channel communication, polarization optics, etc.

14.
Opt Express ; 28(3): 3561-3575, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32122022

RESUMO

The directional reflection characteristics of fabrics with various texture structures is an important and challenging topic in computer graphics and visual simulation. In the present study, the Bidirectional Reflectance Distribution Function (BRDF) of four different textured fabrics is measured via a self-designed Scatterometry to analyze the effect of surface textures and illuminated wavelengths. Furthermore, a fast and simple BRDF model is provided, and optimal model parameters for fabric BRDF calculation were obtained via a genetic algorithm. The results indicate that the reflected distribution of fabrics is dominated by diffuse reflection and is modulated by surface textures and irradiated wavelengths.

15.
Appl Opt ; 59(8): 2337-2344, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32225765

RESUMO

The complex refractive indices of polymers have important applications in the analysis of their components and the study of radiation endothermic mechanisms. Since these materials have high transmittance in the visible to near-infrared ranges, it is difficult to accurately measure their complex refractive indices. At present, the data for complex refractive indices of polymers are seriously lacking, which greatly limits the applications of these materials in the field of thermal radiation. In this work, spectroscopic ellipsometry (SE) combined with the ray tracing method (RTM) is used to measure the complex refractive indices of five polymers, polydimethylsiloxane, poly(methyl methacrylate) (PMMA), polycarbonate, polystyrene, and polyethylene terephthalate, in the spectral range of 0.4-2 µm. The double optical pathlength transmission method (DOPTM) is used to measure the complex refractive indices of three polymers, PMMA, polyvinyl chloride, and polyetherimide, in the 0.4-2 µm range. The complex refractive index of PMMA measured by the DOPTM almost coincides with the data measured by SE combined with the RTM. The results show that the trends of the complex refractive indices spectra for the seven polymers in the 0.4-2 µm range are similar. This work makes up for the lack of complex refractive indices in the 0.4-2 µm range for these seven materials and points out the direction for accurate measurements of the complex refractive indices of polymers with weak absorption.

16.
Plant Biotechnol J ; 17(1): 233-251, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29873883

RESUMO

MicroRNA393 (miR393) has been implicated in plant growth, development and multiple stress responses in annual species such as Arabidopsis and rice. However, the role of miR393 in perennial grasses remains unexplored. Creeping bentgrass (Agrostis stolonifera L.) is an environmentally and economically important C3 cool-season perennial turfgrass. Understanding how miR393 functions in this representative turf species would allow the development of novel strategies in genetically engineering grass species for improved abiotic stress tolerance. We have generated and characterized transgenic creeping bentgrass plants overexpressing rice pri-miR393a (Osa-miR393a). We found that Osa-miR393a transgenics had fewer, but longer tillers, enhanced drought stress tolerance associated with reduced stomata density and denser cuticles, improved salt stress tolerance associated with increased uptake of potassium and enhanced heat stress tolerance associated with induced expression of small heat-shock protein in comparison with wild-type controls. We also identified two targets of miR393, AsAFB2 and AsTIR1, whose expression is repressed in transgenics. Taken together, our results revealed the distinctive roles of miR393/target module in plant development and stress responses between creeping bentgrass and other annual species, suggesting that miR393 would be a promising candidate for generating superior crop cultivars with enhanced multiple stress tolerance, thus contributing to agricultural productivity.


Assuntos
Agrostis/metabolismo , MicroRNAs/genética , Agrostis/genética , Agrostis/crescimento & desenvolvimento , Desidratação , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Resposta ao Choque Térmico , MicroRNAs/fisiologia , Oryza/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal , Estresse Fisiológico
17.
Opt Express ; 27(14): 20073-20083, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31503757

RESUMO

Epsilon-and-mu-near-zero (EMNZ) medium which possessing close to zero permittivity and permeability has peculiar electromagnetic properties and can be utilized to design various electromagnetic functional devices. Recent theoretical research shows that EMNZ medium can be achieved by simply doping normal dielectric in an epsilon-near-zero (ENZ) medium, which is easier to obtain than EMNZ medium. Practically, the permittivity will cross zero in the terahertz regime for polar dielectrics and some semiconductors, and in the visible and ultraviolet for the noble metals. While in the microwave band, it is recently found that some magnetic materials can be used to realize the ENZ medium. Here in this paper, we extend the doping theory and propose the similar way for realizing EMNZ property in magnetic ENZ medium by adding dielectric dopant. Both the theoretical analysis and full wave simulation show EMNZ can be achieved by adjusting the parameters of normal dielectric dopants, such as the size, relative permittivity, as well as the number of dopants in a magnetic ENZ with arbitrary value of permeability. To verify the proposed theory, a practical electromagnetic tunneling structure is designed and tested based on an existing magnetic ENZ material through proper dielectric doping. The proposed design method may provide realistic and meaningful guidance for the realization and application of practical EMNZ medium at microwave frequency.

18.
Opt Express ; 27(8): A280-A291, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31052882

RESUMO

Noble metal nanoparticle clusters show unique light absorption and catalysis properties, which have been widely used in the application of photocatalysis, optoelectronics, biomedical optics and so on. The absorption cross section of densely packed nanoparticle clusters, which can be enhanced or restricted due to the near field effects needs to be studied thoroughly. In this work, focusing on Au nanoparticle at the localized plasmon resonance wavelength, the effects of monomer diameter D, monomer number N, particle volume fraction Fv and complex refractive index m on the nondimensional absorption cross section η = Cabs,total/(N·Cabs) (normalized by N and the absorption cross section Cabs of a single particle) of densely packed nanoparticle clusters are studied by using the superposition T-matrix method. It is found that the enhancement (η > 1) and restriction (η < 1) mechanisms of the absorption cross section of nanoparticle clusters are determined by two competing factors (i.e. the multiple scattering and shielding effect), and the extent of these two mechanisms is mainly dependent on the monomer size parameter and the monomer number. The effect of the particle volume fraction on the nondimensional absorption cross section of nanoparticle clusters is totally different in different mechanisms. Specifically, the nondimensional absorption cross section peaks at the particle volume fraction of about 50% in the enhancement mechanism (in our calculation: D < 14 nm, N = 100), while in the restriction mechanism it decreases monotonously with increasing particle volume fraction. Moreover, the absorption efficiency of nanoparticle clusters with more absorptive monomer decreases more sharply with increasing particle volume fraction. The complex refractive index of particle shows significant effects on the nondimensional absorption cross section of nanoparticle clusters, and the largest nondimensional absorption cross section of nanoparticle clusters (N = 100) is larger than 8.

19.
Opt Express ; 27(8): 11006-11017, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31052952

RESUMO

Electromagnetic (EM) polarization control is a key issue in various studies on communication and imaging systems. Two-dimensional metasurfaces have been employed to realize polarization conversion based on chiral, anisotropic structures. Herein, we employ Huygens' metasurfaces that utilize both electric and magnetic resonances when interacting with EM waves to realize polarization manipulation. Polarization conversion is achieved by introducing direct coupling between the equivalent electric and magnetic sources. A polarization conversion splitter as well as reflective and transmissive polarization convertors are designed and verified by simulations and experiments. The proposed polarization manipulation devices possess compact dimensions in the deep sub-wavelength regime and maintain good angular performance for oblique incidences up to 60°.

20.
Int J Mol Sci ; 20(10)2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126029

RESUMO

King grass, a hybrid grass between pearl millet and elephant grass, has many excellent characteristics such as high biomass yield, great stress tolerance, and enormous economic and ecological value, which makes it ideal for development of phytoremediation. At present, the physiological and molecular response of king grass to cadmium (Cd) stress is poorly understood. Transcriptome analysis of early response (3 h and 24 h) of king grass leaves and roots to high level Cd (100 µM) has been investigated and has shed light on the molecular mechanism underlying Cd stress response in this hybrid grass. Our comparative transcriptome analysis demonstrated that in combat with Cd stress, king grass roots have activated the glutathione metabolism pathway by up-regulating glutathione S-transferases (GSTs) which are a multifunctional family of phase II enzymes that detoxify a variety of environmental chemicals, reactive intermediates, and secondary products of oxidative damages. In roots, early inductions of phenylpropanoid biosynthesis and phenylalanine metabolism pathways were observed to be enriched in differentially expressed genes (DEGs). Meanwhile, oxidoreductase activities were significantly enriched in the first 3 h to bestow the plant cells with resistance to oxidative stress. We also found that transporter activities and jasmonic acid (JA)-signaling might be activated by Cd in king grass. Our study provided the first-hand information on genome-wide transcriptome profiling of king grass and novel insights on phytoremediation.


Assuntos
Cádmio/metabolismo , Regulação da Expressão Gênica de Plantas , Pennisetum/genética , Proteínas de Plantas/genética , Transcriptoma , Perfilação da Expressão Gênica , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Pennisetum/fisiologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA