Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Breast Cancer Res ; 26(1): 40, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459598

RESUMO

BACKGROUND: 99mTc radiolabeled nanobody NM-02 (99mTc-NM-02) is a novel single photon emission computed tomography (SPECT) probe with a high affinity and specificity for human epidermal growth factor receptor 2 (HER2). In this study, a clinical imaging trial was conducted to investigate the relationship between 99mTc-NM-02 uptake and HER2 expression in patients with breast cancer. METHODS: Thirty patients with pathologically confirmed breast cancer were recruited and imaged with both 99mTc-NM-02 SPECT/computed tomography (CT) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT. According to the treatment conditions before recruitment, patients were divided into two groups, the newly diagnosed group (n = 24) and the treated group (n = 6). The maximal standard uptake value (SUVmax) of 18F-FDG and SUVmax and mean SUV (SUVmean) of 99mTc-NM-02 in the lesions were determined to analyze the relationship with HER2 expression. RESULTS: No meaningful relationship was observed between 18F-FDG uptake and HER2 expression in 30 patients with breast cancer. 99mTc-NM-02 uptake was positively correlated with HER2 expression in the newly diagnosed group, but no correlation was observed in the treated group. 99mTc-NM-02 uptake in HER2-positive lesions was lower in those with effective HER2-targeted therapy compared with the newly diagnosed group. 99mTc-NM-02 SPECT/CT detected brain and bone metastases of breast cancer with a different imaging pattern from 18F-FDG PET/CT. 99mTc-NM-02 showed no non-specific uptake in inflamed tissues and revealed intra- and intertumoral HER2 heterogeneity by SPECT/CT imaging in 9 of the 30 patients with breast cancer. CONCLUSIONS: 99mTc-NM-02 SPECT/CT has the potential for visualizing whole-body HER2 overexpression in untreated patients, making it a promising method for HER2 assessment in patients with breast cancer. TRIAL REGISTRATION: NCT04674722, Date of registration: December 19, 2020.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Receptor ErbB-2 , Feminino , Humanos , Neoplasias Ósseas/secundário , Neoplasias da Mama/diagnóstico por imagem , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Anticorpos de Domínio Único
2.
Int Wound J ; 21(4): e14589, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135901

RESUMO

This study focused on unravelling the role of PCAT-1 in wound-healing process, particularly its impact on regenerative and osteogenic abilities of mesenchymal stem cells (MSCs). We delved into how PCAT-1 regulates mitochondrial oxidative phosphorylation (OXPHOS) and interacts with pivotal molecular pathways, especially ß-catenin and PKM2, using human bone marrow-derived MSCs. MSCs were cultured under specific conditions and PCAT-1 expression was modified through transfection. We thoroughly assessed several critical parameters: MSC proliferation, mitochondrial functionality, ATP production and expression of wound healing and osteogenic differentiation markers. Further, we evaluated alkaline phosphatase (ALP) activity and mineral deposition, essential for bone healing. Our findings revealed that overexpressing PCAT-1 significantly reduced MSC proliferation, hampered mitochondrial performance and lowered ATP levels, suggesting the clear inhibitory effect of PCAT-1 on these vital wound-healing processes. Additionally, PCAT-1 overexpression notably decreased ALP activity and calcium accumulation in MSCs, crucial for effective bone regeneration. This overexpression also led to the reduction in osteogenic marker expression, indicating suppression of osteogenic differentiation, essential in wound-healing scenarios. Moreover, our study uncovered a direct interaction between PCAT-1 and the PKM2/ß-catenin pathway, where PCAT-1 overexpression intensified PKM2 activity while inhibiting ß-catenin, thereby adversely affecting osteogenesis. This research thus highlights PCAT-1's significant role in impairing wound healing, offering insights into the molecular mechanisms that may guide future therapeutic strategies for enhancing wound repair and bone regeneration.


Assuntos
Doenças Mitocondriais , beta Catenina , Humanos , beta Catenina/metabolismo , beta Catenina/farmacologia , Osteogênese/fisiologia , Cicatrização , Células da Medula Óssea/metabolismo , Trifosfato de Adenosina/farmacologia , Diferenciação Celular/fisiologia , Células Cultivadas
3.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835464

RESUMO

In recent years, porous titanium (Ti) scaffolds with BaTiO3 coatings have been designed to promote bone regeneration. However, the phase transitions of BaTiO3 have been understudied, and their coatings have yielded low effective piezoelectric coefficients (EPCs < 1 pm/V). In addition, piezoelectric nanomaterials bring many advantages in eliciting cell-specific responses. However, no study has attempted to design a nanostructured BaTiO3 coating with high EPCs. Herein, nanoparticulate tetragonal phase BaTiO3 coatings with cube-like nanoparticles but different effective piezoelectric coefficients were fabricated via anodization combining two hydrothermal processes. The effects of nanostructure-mediated piezoelectricity on the spreading, proliferation, and osteogenic differentiation of human jaw bone marrow mesenchymal stem cells (hJBMSCs) were explored. We found that the nanostructured tetragonal BaTiO3 coatings exhibited good biocompatibility and an EPC-dependent inhibitory effect on hJBMSC proliferation. The nanostructured tetragonal BaTiO3 coatings of relatively smaller EPCs (<10 pm/V) exhibited hJBMSC elongation and reorientation, broad lamellipodia extension, strong intercellular connection and osteogenic differentiation enhancement. Overall, the improved hJBMSC characteristics make the nanostructured tetragonal BaTiO3 coatings promising for application on implant surfaces to promote osseointegration.


Assuntos
Células-Tronco Mesenquimais , Nanoestruturas , Humanos , Osteogênese , Titânio/química , Diferenciação Celular , Nanoestruturas/química
4.
Molecules ; 27(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35744811

RESUMO

Triptolide (TP) is a potential drug candidate for the treatment of cancer, but its use was hampered by its systemic toxicity and poor water solubility. Hence, a TP-CSO prodrug was synthesized by conjugating TP to chitosan oligosaccharide (CSO), and characterized by 1H NMR, FTIR, DSC and XRD analyses. The TP-CSO containing about 4 wt% of TP exhibited excellent water solubility (15 mg/mL) compared to TP (0.017 mg/mL). Compared with TP, the pharmacokinetics of the conjugate after oral administration showed a three-fold increase in the half-life in the blood circulation and a 3.2-fold increase in AUC (0-∞). The orally administered TP-CSO could more effectively inhibit tumor progression but with much lower systemic toxicity compared with TP, indicating significant potential for further clinical trials. In conclusion, CSO-based conjugate systems may be useful as a platform for the oral delivery of other sparingly soluble drugs.


Assuntos
Quitosana , Diterpenos , Neoplasias Pancreáticas , Fenantrenos , Pró-Fármacos , Quitosana/química , Diterpenos/química , Compostos de Epóxi/química , Compostos de Epóxi/uso terapêutico , Humanos , Fenantrenos/química , Fenantrenos/uso terapêutico , Pró-Fármacos/uso terapêutico , Água , Neoplasias Pancreáticas
5.
Mol Pharm ; 18(9): 3616-3622, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34328338

RESUMO

Accurate determination of human epidermal growth factor receptor 2 (HER2) expression is essential for HER2-targeted therapy in patients with cancer. HER2 expression in a complex environment, such as in a heterogeneous tumor, makes the precise assessment of the HER2 status difficult using current methods. In this study, we developed a novel 99mTc-labeled anti-HER2 single-domain antibody (99mTc-NM-02) as a molecular imaging tracer for the noninvasive detection of HER2 expression and investigated its safety, radiation dosimetry, biodistribution, and tumor-targeting potential in 10 patients with breast cancer. Our data showed that no drug-related adverse reactions occurred. The tracer mainly accumulated in the kidneys and liver with mild uptake in the spleen, intestines, and thyroid; however, only background tracer levels were observed in other organs where primary tumors and metastases typically occurred. The mean effective dose was 6.56 × 10-3 mSv/MBq, and tracer uptake was visually observed in the primary tumors and metastases. A maximal standard uptake value of 1.5 was determined as a reasonable cutoff for identifying HER2 positivity using SPECT/CT imaging. Our 99mTc-NM-02 tracer is safe for use in breast cancer imaging, with reasonable radiation doses, favorable biodistribution, and imaging characteristics. 99mTc-NM-02 SPECT imaging may be an accurate and noninvasive method to detect the HER2 status in patients with breast cancer.


Assuntos
Neoplasias da Mama/diagnóstico , Compostos Radiofarmacêuticos/administração & dosagem , Receptor ErbB-2/análise , Anticorpos de Domínio Único/administração & dosagem , Adulto , Neoplasias da Mama/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Imagem Molecular/métodos , Compostos Radiofarmacêuticos/farmacocinética , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tecnécio , Distribuição Tecidual
6.
J Nanobiotechnology ; 19(1): 196, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215269

RESUMO

BACKGROUND: The development of alternative anti-angiogenesis therapy for choroidal neovascularization (CNV) remains a great challenge. Nanoparticle systems have emerged as a new form of drug delivery in ocular diseases. Here, we report the construction and characterization of arginine-glycine-aspartic acid (RGD)-conjugated polyethyleneimine (PEI) as a vehicle to load antioxidant salvianolic acid A (SAA) for targeted anti-angiogenesis therapy of CNV. In this study, PEI was consecutively modified with polyethylene glycol (PEG) conjugated RGD segments, 3-(4'-hydroxyphenyl) propionic acid-Osu (HPAO), and fluorescein isothiocyanate (FI), followed by acetylation of the remaining PEI surface amines to generate the multifunctional PEI vehicle PEI.NHAc-FI-HPAO-(PEG-RGD) (for short, RGD-PEI). The formed RGD-PEI was utilized as an effective vehicle platform to load SAA. RESULTS: We showed that RGD-PEI/SAA complexes displayed desirable water dispersibility, low cytotoxicity, and sustainable release of SAA under different pH conditions. It could be specifically taken up by retinal pigment epithelium (RPE) cells which highly expressed ɑvß5 integrin receptors in vitro and selectively accumulated in CNV lesions in vivo. Moreover, the complexes displayed specific therapeutic efficacy in a mouse model of laser induced CNV, and the slow elimination of the complexes in the vitreous cavity was verified by SPECT imaging after 131I radiolabeling. The histological examinations further confirmed the biocompatibility of RGD-PEI/SAA. CONCLUSIONS: The results suggest that the designed RGD-PEI/SAA complexes may be a potential alternative anti-angiogenesis therapy for posterior ocular neovascular diseases.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neovascularização de Coroide/tratamento farmacológico , Nanopartículas Multifuncionais/química , Oligopeptídeos/química , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Ácidos Cafeicos , Linhagem Celular Tumoral , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Lactatos , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Polietilenoglicóis/química , Polietilenoimina/química , Inibidores da Bomba de Prótons/química , Inibidores da Bomba de Prótons/farmacologia , Cicatrização/efeitos dos fármacos
7.
Biomacromolecules ; 21(1): 199-213, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31619036

RESUMO

While personalized therapy bears an enormous potential in cancer therapy, the development of flexible, tailorable delivery systems remains challenging. Here, we present a "tool-kit" of various avidin-based bioconjugates (BCs) for the preparation of personalized delivery systems. Corresponding BCs were synthesized using the self-assembly of avidin with various biotinylated ligands, such as one cationic glycodendrimer for dendriplex adsorption and two functional ligands for imaging (glycodendrimers with DOTA or NOTA units) or targeting (biotinylated PEG decorated with ligands). Substituting antibodies for targeting small molecules were coupled to biotin-PEG compounds for addressing the folate receptor (FR), epidermal growth factor receptor (EGFR), and prostate-specific membrane antigen (PSMA). After successful characterization and proof of good storage and redispersion properties of BCs, cytotoxicity assays and first in vivo imaging studies with 99mTc-complexing bioconjugates provide evidence that these BCs and their avidin analogues can be used as tool-kit components in theranostic systems for personalized medicine.


Assuntos
Quelantes/química , Meios de Contraste/química , Peptídeos/química , Animais , Antígenos de Superfície/metabolismo , Avidina/química , Biotina/química , Dendrímeros/química , Diagnóstico por Imagem , Receptores ErbB/metabolismo , Ácido Fólico/química , Glutamato Carboxipeptidase II/metabolismo , Células HEK293 , Compostos Heterocíclicos com 1 Anel/química , Humanos , Masculino , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular/métodos , Nanomedicina/métodos , Polietilenoglicóis/química , Neoplasias da Próstata/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Nanobiotechnology ; 18(1): 127, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907598

RESUMO

BACKGROUND: The biofunctionalization of titanium implants for high osteogenic ability is a promising approach for the development of advanced implants to promote osseointegration, especially in compromised bone conditions. In this study, polyelectrolyte multilayers (PEMs) were fabricated using the layer-by-layer approach with a chitosan-miRNA (CS-miRNA) complex and sodium hyaluronate (HA) as the positively and negatively charged polyelectrolytes on microarc-oxidized (MAO) Ti surfaces via silane-glutaraldehyde coupling. METHODS: Dynamic contact angle and scanning electron microscopy measurements were conducted to monitor the layer accumulation. RiboGreen was used to quantify the miRNA loading and release profile in phosphate-buffered saline. The in vitro transfection efficiency and the cytotoxicity were investigated after seeding mesenchymal stem cells (MSCs) on the CS-antimiR-138/HA PEM-functionalized microporous Ti surface. The in vitro osteogenic differentiation of the MSCs and the in vivo osseointegration were also evaluated. RESULTS: The surface wettability alternately changed during the formation of PEMs. The CS-miRNA nanoparticles were distributed evenly across the MAO surface. The miRNA loading increased with increasing bilayer number. More importantly, a sustained miRNA release was obtained over a timeframe of approximately 2 weeks. In vitro transfection revealed that the CS-antimiR-138 nanoparticles were taken up efficiently by the cells and caused significant knockdown of miR-138 without showing significant cytotoxicity. The CS-antimiR-138/HA PEM surface enhanced the osteogenic differentiation of MSCs in terms of enhanced alkaline phosphatase, collagen production and extracellular matrix mineralization. Substantially enhanced in vivo osseointegration was observed in the rat model. CONCLUSIONS: The findings demonstrated that the novel CS-antimiR-138/HA PEM-functionalized microporous Ti implant exhibited sustained release of CS-antimiR-138, and notably enhanced the in vitro osteogenic differentiation of MSCs and in vivo osseointegration. This novel miRNA-functionalized Ti implant may be used in the clinical setting to allow for more effective and robust osseointegration.


Assuntos
Quitosana/farmacologia , Preparações de Ação Retardada/farmacologia , MicroRNAs/farmacologia , Osteogênese/efeitos dos fármacos , Próteses e Implantes , Titânio/farmacologia , Fosfatase Alcalina , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Ácido Hialurônico , Masculino , Células-Tronco Mesenquimais , Nanopartículas , Osseointegração/efeitos dos fármacos , Polieletrólitos/química , Polieletrólitos/farmacologia , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Transfecção
9.
J Nanobiotechnology ; 18(1): 143, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33054757

RESUMO

BACKGROUND: Glioma is the deadliest brain cancer in adults because the blood-brain-barrier (BBB) prevents the vast majority of therapeutic drugs from entering into the central nervous system. The development of BBB-penetrating drug delivery systems for glioma therapy still remains a great challenge. In this study, we aimed to design and develop a theranostic nanocomplex with enhanced BBB penetrability and tumor-targeting efficiency for glioma single-photon emission computed tomography (SPECT) imaging and anticancer drug delivery. RESULTS: This multifunctional nanocomplex was manufactured using branched polyethylenimine (PEI) as a template to sequentially conjugate with methoxypolyethylene glycol (mPEG), glioma-targeting peptide chlorotoxin (CTX), and diethylenetriaminepentaacetic acid (DTPA) for 99mTc radiolabeling on the surface of PEI. After the acetylation of the remaining PEI surface amines using acetic anhydride (Ac2O), the CTX-modified PEI (mPEI-CTX) was utilized as a carrier to load chemotherapeutic drug doxorubicin (DOX) in its interior cavity. The formed mPEI-CTX/DOX complex had excellent water dispersibility and released DOX in a sustainable and pH-dependent manner; furthermore, it showed targeting specificity and therapeutic effect of DOX toward glioma cells in vitro and in vivo (a subcutaneous tumor mouse model). Owing to the unique biological properties of CTX, the mPEI-CTX/DOX complex was able to cross the BBB and accumulate at the tumor site in an orthotopic rat glioma model. In addition, after efficient radiolabeling of PEI with 99mTc via DTPA, the 99mTc-labeled complex could help to visualize the drug accumulation in tumors of glioma-bearing mice and the drug delivery into the brains of rats through SPECT imaging. CONCLUSIONS: These results indicate the potential of the developed PEI-based nanocomplex in facilitating glioma-targeting SPECT imaging and chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/diagnóstico por imagem , Sistemas de Liberação de Medicamentos/métodos , Glioma/diagnóstico por imagem , Polietilenoimina/química , Medicina de Precisão/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Barreira Hematoencefálica , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Doxorrubicina , Glioma/patologia , Camundongos , Ácido Pentético/análogos & derivados , Polietilenoglicóis , Ratos , Venenos de Escorpião , Tomografia Computadorizada por Raios X/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Langmuir ; 35(41): 13405-13412, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31545902

RESUMO

Development of tumor dual mode contrast agents is still a great challenge due to the relative low accumulation at tumor site, which result in the poor imaging efficiency. In this study, we constructed functional technetium-99m (99mTc) labeled polyethylenimine (PEI)-entrapped gold nanoparticles (Au PENs) with pH-responsive charge conversion property for enhanced single photon emission computed tomography (SPECT)/computed tomography (CT) dual mode imaging of cancer cells. PEI with amine functional groups (PEI.NH2) was successively modified with monomethyl ether and carboxyl functionalized polyethylene glycol (mPEG-COOH), maleimide and succinimidyl valerate functionalized PEG (MAL-PEG-SVA), diethylenetriaminepentaacetic dianhydride (DTPA), and fluorescein isothiocyanate (FI), and used to entrapped gold nanoparticles inside, followed by conjugation with the alkoxyphenyl acylsulfonamide (APAS) through the PEG maleimide, acetylation of the PEI leftover surface amines and 99mTc labeling. The created nanosystem with the mean Au core diameter of 3.3 nm and with a narrow size distribution displays an excellent colloidal stability and desired cytocompatibility in the investigated Au concentration range. Due to the fact that the attached APAS moieties are responsive to pH, the functionalized Au PENs with a neutral surface charge can switch to be positively charged under slightly acidic pH condition, which could improve the cellular uptake by cancer cells. With these properties, the developed functionalized Au PENs could achieve enhanced dual mode SPECT/CT imaging of cancer cells in vitro. The constructed PEI-based nanodevices may be adopted as an excellent dual mode contrast agent for SPECT/CT imaging of cancer cells of different types.


Assuntos
Ouro , Marcação por Isótopo , Nanopartículas Metálicas , Neoplasias , Polietilenoimina , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Linhagem Celular Tumoral , Ouro/química , Ouro/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Polietilenoimina/química , Polietilenoimina/farmacologia , Tecnécio/química , Tecnécio/farmacologia
11.
J Nanobiotechnology ; 17(1): 30, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30782154

RESUMO

BACKGROUND: Malignant glioma is the most common and deadliest brain cancer due to the obstacle from indistinct tumor margins for surgical excision and blood brain barrier (BBB) for chemotherapy. Here, we designed and prepared multifunctional polyethylenimine-entrapped gold nanoparticles (Au PENPs) for targeted SPECT/CT imaging and radionuclide therapy of glioma. RESULTS: Polyethylenimine was selected as a template for sequential modification with polyethylene glycol (PEG), glioma-specific peptide (chlorotoxin, CTX) and 3-(4-hydroxyphenyl)propionic acid-OSu (HPAO), and were then used to entrap gold nanoparticles (Au NPs). After 131I radiolabeling via HPAO, the 131I-labeded CTX-functionalized Au PENPs as a multifunctional glioma-targeting nanoprobe were generated. Before 131I radiolabeling, the CTX-functionalized Au PENPs exhibited a uniform size distribution, favorable X-ray attenuation property, desired water solubility, and cytocompatibility in the given Au concentration range. The 131I-labeled CTX-functionalized Au PENPs showed high radiochemical purity and stability, and could be used as a nanoprobe for the targeted SPECT/CT imaging and radionuclide therapy of glioma cells in vitro and in vivo in a subcutaneous tumor model. Owing to the unique biological properties of CTX, the developed nanoprobe was able to cross the BBB and specifically target glioma cells in a rat intracranial glioma model. CONCLUSIONS: Our results indicated that the formed nanosystem had the significant potential to be applied for glioma targeted diagnosis and therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Glioma/diagnóstico por imagem , Glioma/radioterapia , Nanopartículas Metálicas , Venenos de Escorpião , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Ouro , Humanos , Masculino , Camundongos , Peptídeos , Polietilenoimina , Ratos , Ratos Sprague-Dawley , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia Computadorizada por Raios X/métodos
12.
Nanomedicine ; 14(5): 1719-1731, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29665441

RESUMO

Hierarchical micropore/nanorod-patterned strontium doped hydroxyapatite (Ca9Sr1(PO4)6(OH)2, Sr1-HA) structures (MNRs) with different nanorod diameters of about 30, 70 and 150 nm were coated on titanium, to investigate the effect of nanorod diameter on osteogenesis and the involved mechanism. Compared to micropore/nanogranule-patterned Sr1-HA coating (MNG), MNRs gave rise to dramatically enhanced in vitro mesenchymal stem cell functions including osteogenic differentiation in the absence of osteogenic supplements and in vivo osseointegration related to the nanorod diameter with about 70 nm displaying the best effects. MNRs activated the cellular Wnt/ß-catenin pathway by increasing the expression of Wnt3a and LRP6 and decreasing the expression of Wnt/ß-catenin pathway antagonists (sFRP1, sFRP2, Dkk1 and Dkk2). The exogenous Wnt3a significantly enhanced the ß-catenin signaling activation and cell differentiation on MNG, and the exogenous Dkk1 attenuated the enhancing effect of MNRs on them. The data demonstrate that MNRs favor osseointegration via a Wnt/ß-catenin pathway.


Assuntos
Materiais Revestidos Biocompatíveis/administração & dosagem , Células-Tronco Mesenquimais/citologia , Nanotubos/química , Osseointegração , Osteogênese , Via de Sinalização Wnt , Animais , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Durapatita/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Coelhos , Propriedades de Superfície , Titânio/química
13.
J Neurooncol ; 133(2): 287-295, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28488065

RESUMO

Gliomas, the most prevalent type of brain tumor in adults, are associated with high rates of morbidity and mortality. Recent studies on 131I labeled scorpion toxins suggest they can be developed as tumor-specific agents for glioma diagnosis and treatment. This study investigated the potential of 131I labeled Buthus martensii Karsch chlorotoxin (131I-BmK CT) as a new approach for targeted imaging and therapy of glioma. The results showed that 131I can be successfully linked to BmK CT with satisfactory radiochemical purity and stability and that 131I-BmK CT markedly inhibited glioma cell growth in a dose and time dependent manner, with significant accumulation in glioma cells in vitro. Persistent intratumoral radioiodine retention and specific accumulation of 131I-BmK CT were observed in C6 glioma tumor, which was clearly visualized by SPECT imaging. Both intratumoral and intravenous injections of 131I-BmK CT could result in significant tumor inhibition efficacy and prolonging the lifetime of tumor-bearing mice. Based on these promising results, it is concluded that 131I-BmK CT has the potential to be explored as a novel tool for SPECT imaging and radionuclide therapy of glioma.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Venenos de Escorpião/uso terapêutico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/uso terapêutico , Venenos de Escorpião/farmacocinética , Taxa de Sobrevida , Fatores de Tempo , Tomografia Computadorizada de Emissão de Fóton Único , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Molecules ; 22(9)2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28841180

RESUMO

Recent advances in nuclear medicine have explored nanoscale carriers for targeted delivery of various radionuclides in specific manners to improve the effect of diagnosis and therapy of diseases. Due to the unique molecular architecture allowing facile attachment of targeting ligands and radionuclides, dendrimers provide versatile platforms in this filed to build abundant multifunctional radiolabeled nanoparticles for nuclear medicine applications. This review gives special focus to recent advances in dendrimer-based nuclear medicine agents for the imaging and treatment of cancer, cardiovascular and other diseases. Radiolabeling strategies for different radionuclides and several challenges involved in clinical translation of radiolabeled dendrimers are extensively discussed.


Assuntos
Antineoplásicos/uso terapêutico , Dendrímeros/uso terapêutico , Radioisótopos/uso terapêutico , Animais , Antineoplásicos/química , Dendrímeros/química , Portadores de Fármacos , Humanos , Marcação por Isótopo , Nanopartículas , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Medicina Nuclear , Imagem Óptica , Tomografia por Emissão de Pósitrons , Radioisótopos/química , Cintilografia/métodos , Tomografia Computadorizada de Emissão de Fóton Único
15.
Nanomedicine ; 12(5): 1161-73, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26961465

RESUMO

Advanced titanium based bone implant with fast established, rigid and stable osseointegration is stringently needed in clinic. Here the hierarchical micropore/nanorod-patterned strontium doped hydroxyapatite (Ca9Sr1(PO4)6(OH)2, Sr1-HA) coatings (MNRs) with different interrod spacings varying from about 300 to 33nm were developed. MNRs showed dramatically differential biological performance closely related to the interrod spacing. Compared to micropore/nanogranule-patterned Sr1-HA coating (MNG), MNRs with an interrod spacing of larger than 137nm resulted in inhibited in vitro mesenchymal stem cell functions and in vivo osseointegration, while those of smaller than 96nm gave rise to dramatically enhanced the biological effect, especially those of mean 67nm displayed the best effect. The differential biological effect of MNRs was related to their modulation on the focal adhesion mediated mechanotransduction. These results suggest that MNRs with a mean interrod spacing of 67nm may give rise to an advanced implant of improved clinical performance.


Assuntos
Biomimética , Materiais Revestidos Biocompatíveis , Mecanotransdução Celular , Nanotubos , Osseointegração , Durapatita , Humanos , Osteogênese , Titânio
16.
Int J Mol Sci ; 15(7): 12998-3009, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25054322

RESUMO

Fibroblasts, which play an important role in biological seal formation and maintenance, determine the long-term success of percutaneous implants. In this study, well-defined microporous structures with micropore diameters of 10-60 µm were fabricated by microelectromechanical systems and their influence on the fibroblast functionalities was observed. The results show that the microporous structures with micropore diameters of 10-60 µm did not influence the initial adherent fibroblast number; however, those with diameters of 40 and 50 µm improved the spread, actin stress fiber organization, proliferation and fibronectin secretion of the fibroblasts. The microporous structures with micropore diameters of 40-50 µm may be promising for application in the percutaneous part of an implant.


Assuntos
Fibroblastos/citologia , Sistemas Microeletromecânicos/métodos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patologia , Adesão Celular , Proliferação de Células , Células Cultivadas , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Humanos , Sistemas Microeletromecânicos/instrumentação , Porosidade , Próteses e Implantes
17.
Adv Mater ; 36(2): e2309789, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37971929

RESUMO

Computed tomography (CT) is a widely utilized noninvasive diagnostic tool in clinical practice. However, the commonly employed small molecular iodinated contrast agents (ICAs) in clinical CT imaging have limitations such as nonspecific distribution in body, rapid clearance through kidneys, etc., leading to a narrow imaging time window. In contrast, existing nano-sized ICAs face challenges like structural uncertainty, poor reproducibility, low iodine content, and uniformity issues. In this study, a novel approach is presented utilizing the aggregation-induced emission luminogen (AIEgen) to design and fabricate a kind of monocomponent nano-sized ICA (namely, BioDHU-CT NPs) that exhibits a unique aggregation effect upon activation. The small sized BioDHU-CT nanoparticles exhibit excellent tumor targeting capabilities and can release ICA modified with AIEgen with a high release efficiency up to 88.45%, under the activation of reactive oxygen species highly expressed in tumor regions. The released ICA performs in situ aggregation capability in the tumor region, which can enhance the retention efficiency of CT contrast agents, extending the imaging time window and improving the imaging quality in tumor regions.


Assuntos
Nanopartículas , Neoplasias , Humanos , Meios de Contraste/química , Reprodutibilidade dos Testes , Neoplasias/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Nanopartículas/química
18.
Int J Biol Macromol ; 277(Pt 3): 134431, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147629

RESUMO

Oleanolic acid is an active ingredient from natural products with anti-breast cancer activity. However, the poor solubility in water and low bioavailability have limited its effectiveness in clinic. To improve the anticancer activity of oleanolic acid, we synthesized a novel oleanolic quaternary ammonium (QDT), which, driven by electrostatic interactions, was introduced into heparin and coated with chitosan to obtain a QDT/heparin/chitosan nanoaggregate (QDT/HEP/CS NAs). QDT/HEP/CS NAs showed the negative zeta potential (-35.01 ± 4.38 mV), suitable mean particle size (150.45 ± 0.68 nm) with strip shape, and high drug loading (36 %). The coated chitosan had strong anti-leakage characteristics toward QDT under physiological conditions. More importantly, upon sustained release in tumor cells, QDT could significantly decrease the mitochondrial membrane potential and induce apoptosis of breast cancer cells. Further in vivo antitumor study on 4 T1 tumor-bearing mice confirmed the enhanced anticancer efficacy of QDT/HEP/CS NAs via upregulation of caspase-3, caspase-9 and cytochrome C, which was attributed to the high accumulation in tumor via the enhanced permeability and retention effect. Moreover, QDT/HEP/CS NAs significantly enhanced the biosafety and biocompatibility of QDT in vitro and in vivo. Collectively, the development of QDT/HEP/CS NAs with high antitumor activity, favorable biodistribution and good biocompatibility provided a safe, facile and promising strategy to improve the anti-cancer effect of traditional Chinese medicine ingredients.


Assuntos
Apoptose , Neoplasias da Mama , Quitosana , Heparina , Ácido Oleanólico , Quitosana/química , Quitosana/farmacologia , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Ácido Oleanólico/análogos & derivados , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Humanos , Feminino , Camundongos , Apoptose/efeitos dos fármacos , Heparina/química , Heparina/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Portadores de Fármacos/química , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Redox Biol ; 70: 103076, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38340635

RESUMO

Wilson's disease (WD) is a genetic disorder that primarily leads to the pathological accumulation of copper (Cu) in the liver, causing an abnormal increase in reactive oxygen species (ROS). The prevailing clinical therapy for WD involves lifelong use of Cu chelation drugs to facilitate Cu excretion in patients. However, most available drugs exert severely side-effects due to their non-specific excretion of Cu, unsuitable for long-term use. In this study, we construct a prochelator that enables precise and controlled delivery of Cu chelator drugs to the liver in WD model, circumventing toxic side effects on other organs and normal tissues. This innovative prochelator rapidly releases the chelator and the fluorescent molecule methylene blue (MB) upon activation by ROS highly expressed in the liver of WD. The released chelator coordinates with Cu, efficiently aiding in Cu removal from the body and effectively inhibiting the pathological progression of WD.


Assuntos
Degeneração Hepatolenticular , Humanos , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/patologia , Quelantes/farmacologia , Quelantes/uso terapêutico , Espécies Reativas de Oxigênio , Cobre
20.
Acta Biomater ; 182: 188-198, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38734285

RESUMO

Therapeutic resistance is an essential challenge for nanotherapeutics. Herein, a narrow bandgap RuI3 nanoplatform has been constructed firstly to synergize radiotherapy (RT), photothermal therapy (PTT), and thermoelectric dynamic therapy (TEDT) for tumor eradication. Specifically, the photothermal performance of RuI3 can ablate tumor cells while inducing TEDT. Noteworthy, the thermoelectric effect is found firstly in RuI3, which can spontaneously generate an electric field under the temperature gradient, prompting carrier separation and triggering massive ROS generation, thus aggravating oxidative stress level and effectively inhibiting HSP-90 expression. Moreover, RuI3 greatly enhances X-ray deposition owing to its high X-ray attenuation capacity, resulting in a pronounced computed tomography imaging contrast and DNA damage. In addition, RuI3 possesses both catalase-like and glutathione peroxidase-like properties, which alleviate tumor hypoxia and reduce antioxidant resistance, further exacerbating 1O2 production during RT and TEDT. This integrated therapy platform combining PTT, TEDT, and RT significantly inhibits tumor growth. STATEMENT OF SIGNIFICANCE: RuI3 nanoparticles were synthesized for the first time. RuI3 exhibited the highest photothermal properties among iodides, and the photothermal conversion efficiency was 53.38 %. RuI3 was found to have a thermoelectric effect, and the power factor could be comparable to that of most conventional thermoelectric materials. RuI3 possessed both catalase-like and glutathione peroxidase-like properties, which contributed to enhancing the effect of radiotherapy.


Assuntos
Terapia Fototérmica , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/terapia , Neoplasias/patologia , Camundongos Nus , Terapia Combinada , Hipertermia Induzida , Radioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA