Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 22(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38393065

RESUMO

It is important to improve the production of bioactive secondary products for drug development. The Escherichia coli-Streptomyces shuttle vector pSET152 and its derived vector pIB139 containing a strong constitutive promoter ermEp* are commonly used as integrative vectors in actinomycetes. Four new integrative vectors carrying the strong constitutive promoter kasOp*, hrdBp, SCO5768p, and SP44, respectively, were constructed and proven to be functional in different mangrove-derived Streptomyces host strains by using kanamycin resistance gene neo as a reporter. Some biosynthetic genes of elaiophylins, azalomycin Fs, and armeniaspirols were selected and inserted into these vectors to overexpress in their producers including Streptomyces sp. 219807, Streptomyces sp. 211726, and S. armeniacus DSM 43125, resulting in an approximately 1.1-1.4-fold enhancement of the antibiotic yields.


Assuntos
Actinobacteria , Streptomyces , Streptomyces/genética , Antibacterianos , Regiões Promotoras Genéticas/genética , Vetores Genéticos , Actinobacteria/genética , Plasmídeos
2.
Molecules ; 29(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398634

RESUMO

Hydrogen peroxide (H2O2), a significant member of reactive oxygen species, plays a crucial role in oxidative stress and cell signaling. Abnormal levels of H2O2 in the body can induce damage or even impair body function, leading to the development of certain diseases. Therefore, real-time monitoring of H2O2 in living cells is very important. In this work, the aggregation-induced emission fluorescence probe 2-(2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzyl) oxy) phenyl) imidazo [1,2-a] pyridine (B2) was designed and synthesized, which enables the long-term tracing of H2O2 in living cells. The addition of H2O2 to probe B2 results in a dramatic fluorescence enhancement around 500 nm. Notably, B2 can visualize both exogenous and endogenous H2O2 in living cells. The synthesis method for B2 is simple, has a high yield, and utilizes readily available materials. It exhibits advantages such as low toxicity, photostability, and good biocompatibility. Consequently, the developed fluorescent probe in this study has great potential as a reliable tool for determining H2O2 in living cells.


Assuntos
Peróxido de Hidrogênio , Estresse Oxidativo , Humanos , Fluorescência , Espécies Reativas de Oxigênio , Corantes Fluorescentes , Piridinas
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124061, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479226

RESUMO

Hydrogen peroxide(H2O2), as a reliable signaling biomolecule for oxidative stress, its accurate detection during agent-stimulated oxidative stress plays a vital role in pathological and physiological mechanism exploration for disease theranostics. It's necessary to develop an efficient method for their detection. In view of the advantages of fluorescent probes, we rationally constructed a novel fluorescent probe Compound 2 based on 4-(Bromomethyl)benzeneboronic acid pinacol ester_Herein, a small molecule fluorescent probe was fabricated using isoflore nitrile as fluorescent group, phenylboronic acid pinacol ester as the response group, to detect H2O2. The probe Compound 2 has a strong fluorescence intensity at 575 nm, indicating that the structure of the probe molecule is reasonably designed, and the Stokes shift is up to 172 nm. While the detection time is as low as 30 s and the LOD of the probe for H2O2 is as low as 3.7 µmol/L,the quantum yield is Φ = 40.31 %. It has been successfully used for imaging detection of H2O2 in HepG2 cells and zebrafish for its low toxicity. It can be found that this small molecule fluorescent probe can identify H2O2 in tumor cells significantly and efficiently, which would realize the early diagnosis of tumor.


Assuntos
Ácidos Borônicos , Corantes Fluorescentes , Glicóis , Peróxido de Hidrogênio , Humanos , Animais , Corantes Fluorescentes/toxicidade , Corantes Fluorescentes/química , Peixe-Zebra , Estresse Oxidativo , Células HeLa , Ésteres
4.
Nat Genet ; 56(8): 1750-1761, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38977857

RESUMO

To decipher the genetic diversity within the cucurbit genus Citrullus, we generated telomere-to-telomere (T2T) assemblies of 27 distinct genotypes, encompassing all seven Citrullus species. This T2T super-pangenome has expanded the previously published reference genome, T2T-G42, by adding 399.2 Mb and 11,225 genes. Comparative analysis has unveiled gene variants and structural variations (SVs), shedding light on watermelon evolution and domestication processes that enhanced attributes such as bitterness and sugar content while compromising disease resistance. Multidisease-resistant loci from Citrullus amarus and Citrullus mucosospermus were successfully introduced into cultivated Citrullus lanatus. The SVs identified in C. lanatus have not only been inherited from cordophanus but also from C. mucosospermus, suggesting additional ancestors beyond cordophanus in the lineage of cultivated watermelon. Our investigation substantially improves the comprehension of watermelon genome diversity, furnishing comprehensive reference genomes for all Citrullus species. This advancement aids in the exploration and genetic enhancement of watermelon using its wild relatives.


Assuntos
Citrullus , Genoma de Planta , Telômero , Citrullus/genética , Telômero/genética , Melhoramento Vegetal/métodos , Variação Genética , Filogenia , Domesticação , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA