Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Environ Manage ; 310: 114789, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35220094

RESUMO

Source apportionment of fine particulate matter (PM2.5) components is crucial for air pollution control. Prediction accuracies by the chemical transport model (CTM) significantly affect source apportionment results. Many efforts have been made to improve source apportionment results based on the CTM using mathematical algorithms, but the reasons for uncertainties in source apportionment results are less concerned. Here, an integrated optimization methodology is developed to quantify deviations from emission inventory and chemical mechanism in the model for improving prediction and source apportionment accuracies. Emission deviations of primary aerosols and gaseous pollutants are firstly calculated by an optimization algorithm with observation and receptor model constraints. Emission inventory is then adjusted for a new CTM simulation. Deviations from chemical mechanism for secondary conversions are evaluated by biases between observations and new predictions. Source apportionment results are adjusted according to both emission and chemical mechanism deviations. A winter month in 2016 at the Qingpu supersite in eastern China is selected as a case study. Results show that our integrated optimization methodology can successfully adjust emissions to pull original predictions towards observations. Total deviations of emissions for elemental carbon, organic carbon, primary sulfate, primary nitrate, primary ammonium, sulfur dioxide (SO2), nitrogen oxides (NOx) and ammonia (NH3) are estimated +59.6%, +95.9%, +72.9%, +82.2%, +75.9%, -6.4%, +67.6% and -17.6%, respectively. Also, major directions of deviations from chemical mechanisms can be captured. Deviations from SO2 to secondary sulfate, nitrogen dioxide (NO2) to secondary nitrate and NH3 to secondary ammonium conversions are estimated -77.3%, +27.1% and -38.8%, respectively. Consequently, source apportionment results are significantly improved. This developed methodology provides an efficient way to quantify deviations from emissions and chemical mechanisms to improve source apportionment for air pollution management.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental , Material Particulado/análise , Emissões de Veículos/análise
2.
J Environ Sci (China) ; 122: 115-127, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35717077

RESUMO

The coronavirus (COVID-19) pandemic is disrupting the world from many aspects. In this study, the impact of emission variations on PM2.5-bound elemental species and health risks associated to inhalation exposure has been analyzed based on real-time measurements at a remote coastal site in Shanghai during the pandemic. Most trace elemental species decreased significantly and displayed almost no diel peaks during the lockdown. After the lockdown, they rebounded rapidly, of which V and Ni even exceeded the levels before the lockdown, suggesting the recovery of both inland and shipping activities. Five sources were identified based on receptor modeling. Coal combustion accounted for more than 70% of the measured elemental concentrations before and during the lockdown. Shipping emissions, fugitive/mineral dust, and waste incineration all showed elevated contributions after the lockdown. The total non-carcinogenic risk (HQ) for the target elements exceeded the risk threshold for both children and adults with chloride as the predominant species contributing to HQ. Whereas, the total carcinogenic risk (TR) for adults was above the acceptable level and much higher than that for children. Waste incineration was the largest contributor to HQ, while manufacture processing and coal combustion were the main sources of TR. Lockdown control measures were beneficial for lowering the carcinogenic risk while unexpectedly increased the non-carcinogenic risk. From the perspective of health effects, priorities of control measures should be given to waste incineration, manufacture processing, and coal combustion. A balanced way should be reached between both lowering the levels of air pollutants and their health risks.


Assuntos
Poluentes Atmosféricos , COVID-19 , Adulto , Poluentes Atmosféricos/análise , COVID-19/epidemiologia , Carcinógenos , Criança , China/epidemiologia , Carvão Mineral/análise , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Pandemias , Material Particulado/análise , Medição de Risco , Estações do Ano
3.
J Environ Sci (China) ; 72: 118-132, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30244738

RESUMO

To investigate formation mechanisms of secondary organic carbon (SOC) in Eastern China, measurements were conducted in an urban site in Shanghai in the summer of 2015. A period of high O3 concentrations (daily peak > 120 ppb) was observed, during which daily maximum SOC concentrations exceeding 9.0 µg/(C·m3). Diurnal variations of SOC concentration and SOC/organic carbon (OC) ratio exhibited both daytime and nighttime peaks. The SOC concentrations correlated well with Ox (= O3 + NO2) and relative humidity in the daytime and nighttime, respectively, suggesting that secondary organic aerosol formation in Shanghai is driven by both photochemical production and aqueous phase reactions. Single particle mass spectrometry was used to examine the formation pathways of SOC. Along with the daytime increase of SOC, the number fraction of elemental carbon (EC) particles coated with OC quickly increased from 38.1% to 61.9% in the size range of 250-2000 nm, which was likely due to gas-to-particle partitioning of photochemically generated semi-volatile organic compounds onto EC particles. In the nighttime, particles rich in OC components were highly hygroscopic, and number fraction of these particles correlated well with relative humidity and SOC/OC nocturnal peaks. Meanwhile, as an aqueous-phase SOC tracer, particles that contained oxalate-Fe(III) complex also peaked at night. These observations suggested that aqueous-phase processes had an important contribution to the SOC nighttime formation. The influence of aerosol acidity on SOC formation was studied by both bulk and single particle level measurements, suggesting that the aqueous-phase formation of SOC was enhanced by particle acidity.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Aerossóis/análise , China , Compostos Férricos , Compostos Orgânicos/análise
4.
Sci Total Environ ; 892: 164702, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37302609

RESUMO

To evaluate the optical properties and molecular composition of water-soluble organic carbon (WSOC) in the atmosphere of coastal cities, particle samples were collected in Tianjin, Qingdao and Shanghai, three coastal cities in eastern China. Subsequent analysis by ultraviolet visible and fluorescence spectrometer and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry were performed. The results showed that the concentration levels and light absorption ability of WSOC decreased from the north to south cities, ranking as Tianjin > Qingdao > Shanghai. Three major fluorescent components including less­oxygenated humic-like substances (52-60 %), highly­oxygenated humic-like substances (15-31 %) and protein-like substances (17-31 %) were identified in WSOC based on the fluorescence spectroscopy and parallel factor analysis, which might be closely related to anthropogenic emissions and continental sources as well as secondary formation processes. Five subgroups of molecular components were further identified in WSOC, including the predominant CHON compounds (35-43 %), sulfur-containing compounds (i.e., CHONS and CHOS compounds, 24-43 %), CHO compounds (20-26 %) and halogen-containing compounds (1-7 %). Compared to marine air masses influenced samples, WSOC affected by continental air masses exhibited higher light absorption coefficients and generally had a higher degree of aromaticity and unsaturation, as well as contained more molecular formulas of WSOC, especially enriched with sulfur-containing compounds. In contrast, relatively more abundant halogen-containing compounds were identified in the marine air masses influenced samples. Overall, this study provided new insights into the light-absorbing and chemical properties of WSOC in coastal cities, especially under the influences of continental and marine air masses.


Assuntos
Poluentes Atmosféricos , Carbono , Carbono/análise , China , Material Particulado/análise , Poluentes Atmosféricos/análise , Cidades , Água/química , Substâncias Húmicas/análise , Aerossóis/análise , Compostos de Enxofre , Halogênios/análise , Enxofre/análise , Monitoramento Ambiental/métodos
5.
Am J Rhinol Allergy ; 35(2): 272-279, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32842749

RESUMO

BACKGROUND: According to recent epidemiologic studies, exposure to fine particulate matter (particulate matter 2.5 ≤ µm [PM2.5]) in the air increases the incidence and severity of allergic rhinitis (AR). Ursolic acid (UA) has activities in immune regulation and anti-inflammatory. However, the role of UA intervention on PM2.5-exposed AR remains unknown. In this study, we investigated the effects of UA on tissue remodeling and mucus hypersecretion in a rat model of AR after PM2.5 exposure. METHODS: AR was induced in rats with ovalbumin (OVA) and they were exposed to ambient PM2.5(200 µg/m3) via a PM2.5 inhalation exposure system for 30 days(ARE group). Ursolic acid intervention was administrated in the AR model after PM2.5 exposure (UA group). Hyperplasia of goblet cells was detected by periodic acid-Schiff (PAS) staining and collagen deposition in the nasal mucosa was detected by Masson trichrome (MT) staining.MUC5AC expression was measured by immunohistochemistry. RESULTS: UA group showed reduced goblet cell hyperplasia and collagen deposition in the nasal mucosa which exacerbated after PM2.5 exposure, as reflected by PAS and MT staining when compared with the ARE group. Immunohistochemical results showed that the expression of MUC5AC in the UA group was lower than that in the ARE group. CONCLUSION: Analysis of our data indicated that UA could attenuate nasal remodeling and mucus hypersecretion in aggravation of AR after PM2.5 exposure, which may be the pathophysiologic mechanisms for the prevention of AR exacerbated by exposure to PM2.5.


Assuntos
Rinite Alérgica , Animais , Modelos Animais de Doenças , Muco , Mucosa Nasal , Ovalbumina , Material Particulado/toxicidade , Ratos , Rinite Alérgica/tratamento farmacológico , Triterpenos , Ácido Ursólico
6.
Sci Total Environ ; 741: 140187, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32599398

RESUMO

Nitrate became the most significant component of secondary inorganic aerosols (SNA, the sum of sulfate, nitrate and ammonium ions) as the emissions of sulfur dioxide (SO2) have been greatly reduced in China in recent years. In the Yangtze River Delta (YRD), nitrate could contribute 56% of SNA and 34% of total PM2.5 during haze episodes. In this study, a modified Community Multiscale Air Quality (CMAQ) model was used to provide a comprehensive understanding of nitrate source and formation under severe pollution during winter 2015 and 2016. Three haze episodes (HEP1, HEP2 and HEP3) and one clean episode (CEP) were selected to investigate the emission sector and regional contributions to nitrate at six environmental monitoring sites in the YRD. Source apportionment results showed that industry (35%), transportation (32%) and power (28%) sectors were the important sources of nitrate during haze episodes. Regional transport (60-98%) was responsible for the high nitrate concentrations in the YRD. During haze episodes, the high ozone production (PO3) rate (up to 700 ppb/h) and hydroxyl radicals (OH) removal rate (up to 9 ppb/h) were observed in the daytime indicating the important atmospheric oxidation capacity in the YRD. Also, the nitrogen oxidation ratio (NOR) analysis elucidated that daytime photochemistry played an important role in nitrate formation and the heterogeneous chemistry enhanced the high nitrate at night. Results from emission scenario analysis demonstrated that averaged nitrate concentration in Shanghai decreased by 18% during haze episodes under emission reductions of 20% NOx, NH3 and VOC in the YRD, and Shandong, Shanxi, Henan and Hebei provinces. Emission reduction on the regional scale (one city and its surrounding areas) is an efficient strategy to reduce nitrate concentration in the YRD.

7.
Sci Total Environ ; 710: 135620, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-31785922

RESUMO

Since the concentrations of primary particles and secondary inorganic aerosol components have been reduced significantly due to stringent emission controls, quantifying the source contributions and regional transport of secondary organic aerosol (SOA) is critical to further improve air quality in eastern China. In this study, the Community Multiscale Air Quality (CMAQ) model coupled with the updated SAPRC-11 photochemical mechanism and a revised SOA module was applied to investigate the emission sector and regional contributions to SOA in winter 2015 (January 5-26, 2015) and 2016 (December 20, 2015-January 20, 2016) in the Yangtze River Delta (YRD). The model is generally capable of reproducing the observed SOA concentrations at the Qingpu Supersite in Shanghai. The observed and predicted SOA concentrations are 6.4 µg/m3 and 6.9 µg/m3 in winter 2015, and 5.7 µg/m3 and 9.6 µg/m3 in winter 2016. The mean fraction bias (MFB) of the hourly SOA predictions is 0.22 and 0.32, respectively. High SOA concentrations in the wintertime of YRD are mainly due to aromatic compounds and dicarbonyls (glyoxal and methylglyoxal), which, on average, account for 43% and 53% of total SOA, respectively. The average contributions of industrial, residential, and transportation sectors in the YRD region during the entire simulation periods are 61%, 22%, and 17%, respectively. At the Qingpu Supersite in Shanghai, the industrial sector contributes to as much as 65% of total SOA in the heavy pollution episode of 2016. The contributions from transportation and residential sectors are 16% and 17%, respectively, during the same episode. The industry emissions from the Jiangsu, Zhejiang, and Shanghai are major contributors to the SOA at the Qingpu supersite during the heavy-polluted episodes, accounting for 31%, 19%, and 14% of the total predicted SOA. This study represents the first detailed regional modeling study of source region contributions to SOA in the YRD region and the detailed analyses of SOA in two winters months complement the previous SOA source apportionment studies focusing on seasonal average contributions.

8.
Environ Pollut ; 265(Pt A): 114847, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32502871

RESUMO

This study aims to understand the characteristics of surface ozone (O3), search for factors affecting the variations in its concentration, and estimate its impacts on the secondary organic carbon (SOC) levels and atmospheric oxidation capacities in the Yangtze River Delta (YRD). Four years of continuous observations (2014-2017) of the surface O3, organic carbon, elemental carbon, nitrogen oxides, PM2.5 and meteorological factors along with three years of measurements (2015-2017) of the concentrations of 56 volatile organic compounds were conducted at a rural site. Our measurements showed that the total number of O3 pollution days more than doubled over the four-year period, from 28 days in 2014 to 76 days in 2017. The annual mean of the maximum daily 8-h average O3 concentration during the months with the strongest solar radiation (July-September) showed a 6.8% growth rate, from 124.5 (2014) to 149.8 µg m-3 (2017). Regional transport was shown to be the dominant contributor to the high level of O3 based on a process analysis of the O3 variation using the Weather Research and Forecasting-Community Multiscale Air Quality model for this site. The simulation results indicated that the city junction site served well as an epitome of the regional background of the YRD. We also found that the level of SOC, which is a major component of PM2.5 that results from atmospheric oxidizing processes, gradually increased with the increase in the surface O3 level, even though the overall PM2.5 concentration significantly decreased each year. There was an increasingly strong correlation between SOC and Ox (O3 + nitrogen dioxide) during both the daytime and night-time from 2014 to 2017 when the highest annual O3 concentration was observed. These findings imply that the atmospheric oxidation capacity increased and likely contributed to the SOC production in the YRD during 2014-2017.


Assuntos
Poluentes Atmosféricos/análise , Ozônio/análise , Carbono , China , Cidades , Monitoramento Ambiental , Rios , Estações do Ano
9.
Chemosphere ; 256: 127050, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32446002

RESUMO

Ambient fine particulate matter (PM2.5) can cause adverse health effects through the generation of reactive oxygen species (ROS) after inhalation. Humic-like substances (HULIS) are major constituents contributing to the ROS-generation potential in organic aerosols. In this study, PM2.5 samples in urban Shanghai during autumn and winter (2018-2019) were collected. Mass-normalized ·OH generation rate in surrogate lung fluid (SLF) was used to denote the intrinsic ROS-generation potential of PM2.5 or of the HULIS isolated from PM2.5. In this study, ROS-generation potential of PM2.5 decreased with increasing ambient PM2.5 concentration due to higher percentage of inorganic components in high PM2.5 event. Same trend was observed for the ROS-generation potential of unit mass of HULIS, which was higher when HULIS and PM2.5 concentrations were both relatively lower. The HULIS with high ROS-generation potential but low concentration (High-ROS/Low-Conc HULIS) were likely produced by the atmospheric aqueous-phase reactions during nighttime or under high relative humidity conditions, not from biomass burning emissions or the photochemical pollution products. The association between ROS-generation potential and light absorption properties of HULIS was studied as well. The High-ROS/Low-Conc HULIS also showed stronger light absorbance than the other HULIS. Our results implied the potentially important roles that HULIS species might play in atmospheric environment and human health even when the PM2.5 pollution is low.


Assuntos
Poluentes Atmosféricos/análise , Substâncias Húmicas/análise , Material Particulado/análise , Espécies Reativas de Oxigênio/química , Aerossóis/análise , China , Monitoramento Ambiental , Estações do Ano , Água/química
10.
Sci Total Environ ; 707: 135989, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31874395

RESUMO

BACKGROUND: Systemic inflammation is considered one of the key mechanisms in the development of cardiovascular diseases induced by fine particulate matter (PM2.5) air pollution. However, evidence concerning the effects of various PM2.5 constituents on circulating inflammatory biomarkers were limited and inconsistent. OBJECTIVES: To evaluate the associations of short-term exposure to a variety of PM2.5 constituents with circulating inflammatory biomarkers. METHODS: We conducted a panel study from May to October 2016 among 40 healthy adults in Shanghai, China. We monitored the concentrations of 27 constituents of PM2.5. We applied linear mixed-effect models to analyze the associations of PM2.5 and its constituents with 7 inflammatory biomarkers, and further assessed the robustness of the associations by fitting models adjusting for PM2.5 mass and/or their collinearity. Benjamini-Hochberg false discovery rate was used to correct for multiple comparisons. RESULTS: The associations of PM2.5 were strongest at lag 0 d with tumor necrosis factor-α (TNF-α), at lag 1 d with interleukin-6, interleukin-8, and interleukin-17A, at lag 02 d with monocyte chemoattractant protein-1 (MCP-1) and intercellular adhesion molecule-1 (ICAM-1). After correcting for multiple comparisons in all models, Cl-, K+, Si, K, As, and Pb were significantly associated with interleukin-8; SO42- and Se were marginally significantly associated with interleukin-8; SO42-, As, and Se were marginally significantly associated with TNF-α; and Si, K, Zn, As, Se, and Pb were marginally significantly associated with MCP-1. CONCLUSIONS: Our results suggested that some constituents (SO42-, Cl-, K+, and some elements) might be mainly responsible for systemic inflammation triggered by short-term PM2.5 exposure.


Assuntos
Material Particulado/análise , Adulto , Poluentes Atmosféricos , Poluição do Ar , Biomarcadores , China , Exposição Ambiental , Humanos
11.
Environ Sci Pollut Res Int ; 26(8): 7497-7511, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30659487

RESUMO

Herein we investigated the morphology, chemical characteristics, and source apportionment of fine particulate matter (PM2.5) samples collected from five sites in Jiaxing. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that soot aggregates and coal-fired fly ash were generally the most abundant components in the samples. All the samples were analyzed gravimetrically for mass concentrations and their various compositions were determined. Our results revealed that the PM2.5 concentrations in the samples were in the following order: winter > spring > autumn > summer. The PM2.5 concentrations in winter and spring were higher than those in autumn and summer, except for inorganic elements. Carbonaceous species and water-soluble inorganic ions were the most abundant components in the samples, accounting for 26.17-50.44% and 34.27-49.6%, respectively. The high secondary organic carbon/organic carbon ratio indicated that secondary organic pollution in Jiaxing was severe. The average ratios of NO3-/SO42-, ranging from 1.01 to 1.25 at the five sites, indicated that mobile pollution sources contributed more to the formation of PM2.5 than stationary sources. The BeP/(BeP + BaP) ratio (0.52-0.71) in samples reflected the influence of transportation from outside of Jiaxing. The positive matrix factorization (PMF) model identified eight main pollution sources: secondary nitrates (26.95%), secondary sulfates (15.49%), secondary organic aerosol (SOA) (19.64%), vehicle exhaust (15.67%), coal combustion (8.6%), fugitive dust (7.7%), ships and heavy oil (5.23%), biomass burning, and other sources (0.91%). Therefore, PM2.5 pollution in Jiaxing during the winter and spring seasons was more severe than that in the summer and autumn. Secondary aerosols were the most important source of PM2.5 pollution; therefore, focus should be placed on controlling gaseous precursors.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Aerossóis , Biomassa , China , Carvão Mineral , Poeira , Nitratos , Estações do Ano , Emissões de Veículos , Água
12.
Sci Total Environ ; 695: 133780, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31416039

RESUMO

BACKGROUND: The identification of constituents of fine particulate matter (PM2.5) air pollution that had key impacts of ischemic stroke (the predominant subtype of stroke) is important to understand the underlying biological mechanisms and develop air pollution control policies. OBJECTIVES: To explore the associations between PM2.5 constituents and hospitalization for ischemic stroke in Shanghai, China. METHODS: We conducted a time-series study to explore the associations between 27 constituents of PM2.5 and hospitalization for ischemic stroke in Shanghai, China from 2014 to 2016. The over-dispersed generalized additive models with adjustment for time, day of week, holidays, and weather conditions were used to estimate the associations. We also evaluated the robustness of the effect estimates for each constituent after adjusting for the confounding effects of PM2.5 total mass and gaseous pollutants and the collinearity (the residual) between this constituent and PM2.5 total mass. We also compared the associations between seasons. RESULTS: In total, we identified 4186 ischemic stroke hospitalizations during the study period. The associations of ischemic stroke were consistently significant with elemental carbon and several elemental constituents (Chromium, Iron, Copper, Zinc, Arsenic, Selenium, and Lead) at lag 1 day in single-constituent models, models adjusting for PM2.5 total mass or gaseous pollutants and models adjusting for collinearity. The associations were much stronger in cool season than in warm season. CONCLUSIONS: The current study provides suggestive evidence that elemental carbon and some metallic elements may be mainly responsible for the risks of ischemic stroke hospitalization induced by short-term PM2.5 exposure.


Assuntos
Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Material Particulado/análise , Acidente Vascular Cerebral/epidemiologia , Poluentes Atmosféricos , China/epidemiologia , Hospitalização/estatística & dados numéricos
13.
Environ Int ; 131: 105019, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31330363

RESUMO

BACKGROUND: Fine particulate matter (PM2.5) has been widely associated with airway inflammation represented by increased fractional concentration of exhaled nitric oxide (FeNO). However, it remains unclear whether various PM2.5 constituents have different impacts on FeNO and its production process from the arginase (ARG)-nitric oxide synthase (NOS) pathway. OBJECTIVES: To investigate the acute effects of PM2.5 constituents on FeNO and DNA methylation of genes involved. METHODS: We conducted a longitudinal panel study among 43 young adults in Shanghai, China from May to October in 2016. We monitored the concentrations of 25 constituents of PM2.5. We applied the linear mixed-effect model to evaluate the associations of PM2.5 constituents with FeNO and DNA methylation of the ARG2 and NOS2A genes. RESULTS: Following PM2.5 exposure, NOS2A methylation decreased and ARG2 methylation increased only on the concurrent day, whereas FeNO increased most prominently on the second day. Nine constituents (OC, EC, K, Fe, Zn, Ba, Cr, Se, and Pb) showed consistent associations with elevated FeNO and decreased NOS2A methylation or increased ARG2 methylation in single-constituent models and models adjusting for PM2.5 total mass and collinearity. An interquartile range increase of these constituents was associated with respective decrements of 0.27-1.20 in NOS2A methylation (%5mC); increments of 0.48-1.56 in ARG2 methylation (%5mC); and increments of 7.12%-17.54% in FeNO. CONCLUSIONS: Our results suggested that OC, EC, and some metallic elements may be mainly responsible for the development and epigenetic regulation of airway inflammatory response induced by short-term PM2.5 exposure.


Assuntos
Arginase/metabolismo , Metilação de DNA/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Material Particulado/farmacologia , Adulto , China , Expiração , Feminino , Humanos , Estudos Longitudinais , Masculino , Material Particulado/análise , Adulto Jovem
14.
Sci Total Environ ; 584-585: 307-317, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28117160

RESUMO

Atmospheric particulate polycyclic aromatic hydrocarbons (PAHs) have been drawing sustained attention due to their health risk and effects on air pollution. It is essential to determine the main sources and reduce atmospheric levels of PAHs to protect human health. PAHs in PM2.5 have been detected at five sites located in five districts in Shanghai, a modern metropolitan city in China. Spatial and temporal variations of composition profiles and sources of PAHs at each site in each season were investigated. The results showed that atmospheric particulate PAHs level in Shanghai was the lowest in summer and the highest in winter, dominated by high molecular weight (HMW) PAHs. Analysis with a combination of coefficients of Pearson's correlation and coefficient of divergences indicated heterogeneous spatial and temporal distribution for LMW PAHs and homogenous distribution for HMW PAHs. Diagnostic ratios and positive matrix factorization (PMF) model both identified pyrogenic sources as the main contributor of PAHs in Shanghai, with vehicular source contribution of 32-43% to the total PAHs annually and around 20% from biomass burning emissions in urban and urban buildup areas. While in winter, coal combustion and biomass burning could act as two major sources of PAHs in suburban areas, which could contribute to >70% of total PAHs measured in PM2.5 in Shanghai.

15.
Sci Total Environ ; 571: 1454-66, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27418517

RESUMO

High pollution episodes of PM2.5 and O3 were frequently observed at a rural site (N31.0935º, E120.978°) in eastern Yangtze River Delta (YRD) in summer. To study the impacts of photochemical reactions on secondary aerosol formation in this region, we performed real-time measurements of the mass concentration and composition of PM2.5, particle size distribution (13.6~736.5 nm), concentrations of gas pollutants including O3, SO2, NO2, CO, non-methane hydrocarbons (NMHC)), and nitrate radical in 2013. During the sampling period, the average concentration of PM2.5 was 76.1 (± 16.5) µg/m(3), in which secondary aerosol species including sulfate, nitrate, ammonium, and secondary organic aerosol (SOA) accounted for ~ 62%. Gas-phase oxidation of SO2 was mainly responsible for a fast increase of sulfate (at 1.70 µg/m(3)/h) in the morning. Photochemical production of nitric acid was intense during daytime, but particulate nitrate concentration was low in the afternoon due to high temperature. At night, nitrate was mainly formed through the hydrolysis of NO3 and/or N2O5. The correlations among NMHC, Ox (= O3 + NO2), and SOA suggested that a combination of high emission of hydrocarbons and active photochemical reactions led to the rapid formation of SOA. In addition, several new particle formation and fast growth events were observed despite high ambient aerosol loading. Since the onset of new particle events was accompanied by a rapid increase of H2SO4 and SOA, enhanced formation of sulfate and SOA driven by photochemical oxidation likely promoted the formation and growth of new particles. Together, our results demonstrated that strong atmospheric photochemical reactions enhanced secondary aerosols formation and led to the synchronous occurrence of high concentrations of PM2.5 and O3 in a regional scale. These findings are important for better understanding the air pollution in summer in YRD.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Ozônio/análise , Material Particulado/análise , China , Monitoramento Ambiental , Tamanho da Partícula , Processos Fotoquímicos , Estações do Ano
16.
Huan Jing Ke Xue ; 35(9): 3263-70, 2014 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-25518640

RESUMO

Organic carbon (OC) and elemental carbon (EC) in PM2.5 samples collected in Shanghai urban area during June 2010 to May 2011 were analyzed with IMPROVE-TOR protocol. The results showed that the annual average concentrations of OC and EC in PM2.5 were 8.6 µg.m-3 ± 6.2 µg.m-3 and 2.4 µg.m-3 ± 1.3 µg.m-3 respectively, accounting for 20% of PM2.5 mass concentration. The seasonal average concentrations of OC and EC were highest in winter and lowest in summer. And the percentages of OC and EC in PM2.5 were highest in autumn. The annual average OC/EC ratio was 3. 54 ± 1. 14. The concentrations of secondary organic carbon (SOC) were evaluated by the minimum OC/EC ratio method and the annual average concentration of SOC was 3.9 µg.m(-3) ±4.2 µg.m(-3), accounting for 38.9% of OC. In summer, the concentrations of SOC were relatively low and were correlated well with the maximum hourly concentrations of ozone, which indicated that the photochemical reaction was an important way of SOC formation. In autumn and winter when the west wind direction was predominant, the concentrations of SOC were higher than that in windless condition, which meant the transportation of SOC. The carbonaceous components were associated with source contributions using the principal component analysis (PCA) with eight thermally-derived carbon fractions, OC1, OC2, OC3, OC4, EC1, EC2, EC3 and OPC. Motor vehicle, coal-fired units, biomass burning and road dust were four main sources of OC and EC in PM2.5 in Shanghai urban area, which contributing 69. 8% - 81. 4% of carbonaceous aerosols. The contribution of motor vehicle was high throughout the year. Biomass burning contributed about 15% -20% of OC and EC. The influence of road dust was relatively obvious in spring and autumn. And the contribution of coal-fired units was higher in winter than those in other seasons.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental , Material Particulado/análise , Aerossóis , Biomassa , China , Cidades , Carvão Mineral , Poeira , Ozônio , Estações do Ano , Emissões de Veículos , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA