Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Phys Chem Chem Phys ; 26(4): 3335-3341, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38197880

RESUMO

Ferroic compounds Fe2O(SeO3)2 (FSO) and Fe2(SeO3)3·3H2O (FSOH) prepared by the hydrothermal method are characterized and their optical properties are investigated by combining with first-principles calculations. The results show that (i) FSO is antiferromagnetic below ∼110 K and becomes ferromagnetic at elevated temperatures, while FSOH is antiferromagnetic at low temperatures probably due to a change in the spin state from Fe3+ (S = 5/2) to Fe2+ (S = 2); (ii) the optical bandgap is determined to be ∼2.83 eV for FSO and ∼2.15 eV for FSOH, consistent with the theoretical calculation; and (iii) the angle-resolved polarized Raman spectroscopy results of both crystals demonstrate the strong anisotropic light absorption and birefringence effects, and the unconventional symmetricity of some Raman modes is observed, which can be interpreted from the variation of Raman scattering elements. This work can provide not only an understanding of the structure and physical properties of iron selenites, but also a strategy for exploring the anomalous Raman behaviors in anisotropic crystals, facilitating the design and engineering of novel functional devices with low-symmetry ferroic materials.

2.
Langmuir ; 39(17): 6222-6230, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37079335

RESUMO

Oleylamine/oleic acid (OAm/OA) as the commonly used ligand is indispensable in the synthesis of perovskite nanocrystals (PNCs). Unfortunately, poor colloidal stability and unsatisfactory photoluminescence quantum yield (PLQY) are observed, resulting from a highly dynamic binding nature between ligands. Herein, we adopt a facile hybrid ligand (DDAB/ZnBr2) passivation strategy to reconstruct the surface chemistry of CsPbBr3 NCs. The hybrid ligand can detach the native surface ligand, in which the acid-base reactions between ligands are suppressed effectively. Also, they can substitute the loose capping ligand, anchor to the surface firmly, and supply sufficient halogens to passivate the surface trap, realizing an exceptional PLQY of 95% and an enhanced tolerance toward ambient storage, UV irradiation, anti-solvents, and thermal treatment. Besides, the as-fabricated white light-emitting diode (WLED) utilizing the PNCs as the green-emitting phosphor has a luminous efficiency around 73 lm/W; the color gamut covers 125% of the NTSC standard.

3.
Environ Res ; 237(Pt 1): 116963, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619625

RESUMO

Phosphogypsum (PG) is a solid waste generated during the wet process of phosphoric acid production. The environmental-friendly disposal and recycling of PG is vital in the field of environmental solid waste treatment. In this study, PG is used for adsorbent of dyes in wastewater to achieve the goal of recycling waste with waste. Surfactant-modified phosphogypsum (ODBAC@PG) was prepared using octadecyl dimethyl benzyl ammonium chloride (ODBAC) as modifier. ODBAC@PG exhibits high adsorption capability for anionic dyes (methyl blue (MeB) and indocyanine carmine (IC)). The pseudo-second-order kinetic model fits the kinetic experimental data for the adsorption of two organic anionic dyes. Langmuir adsorption isotherm fits the adsorption characteristics of MeB and IC on ODBAC@PG, exhibiting a monolayer adsorption pattern. Thermodynamic parameters indicate the spontaneous and exothermic properties of MeB and IC on ODBAC@PG. MeB and IC have antagonistic effects on each other in binary adsorption system. High adsorption capacity after six cycles of experiments demonstrates the high reusability of ODBAC@PG. The nature for the adsorption includes electrostatic interaction, hydrogen bond and hydrophobic interaction. Using ODBAC@PG for dyes wastewater treatment can accomplish the goal of treating waste with waste and turning waste into treasure.

4.
Luminescence ; 35(1): 43-51, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31430048

RESUMO

A dual-signal strategy is proposed based on fluorescent biomass-based carbon dots (BC-dots) and chitosan stabilized AuNPs (CS@AuNPs) to determine hyaluronidase (HAase). BC-dots can induce aggregation of CS@AuNPs nanoparticles with a colour change from red to blue. Positively charged CS@AuNPs interacted with the negatively charged hyaluronic acid (HA) through electrostatic adsorption, and CS@AuNPs maintained stability due to the semirigid coil conformation of HA. However, in the presence of HAase, due to enzymatic hydrolysis of HA by HAase, the CS@AuNPs agglomerated. Based on the change of fluorescence and colour, quantitative analysis of HAase was achieved. Linear ranges for the fluorometric and colorimetric determinations were 2.0-70 U mL-1 and 8-60 U mL-1 , respectively, with a detection limit of 0.27 U mL-1 . This dual-signal sensing system possesses high potential for determination of HAase in biological matrices.


Assuntos
Quitosana/química , Ouro/química , Ácido Hialurônico/química , Hialuronoglucosaminidase/urina , Nanopartículas Metálicas/química , Nanotecnologia , Biomassa , Técnicas Biossensoriais , Fluorescência , Humanos , Hialuronoglucosaminidase/metabolismo , Raios Ultravioleta
5.
Biomed Chromatogr ; 33(4): e4477, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30578570

RESUMO

In this study, a reliable ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method coupled with an easy, fast and effective sample pretreatment procedure was developed for simultaneous determination of amitraz, chlordimeform, formetanate and their metabolites in human blood. With the procedures of protein precipitation and a phospholipid-removal step, the endogenous compound interference was significantly reduced, and matrix effects were significantly reduced. The linear ranges of matrix-matched standard curves were from 0.5 to 1000 ng/mL with coefficients of determination >0.996. Very low limits of detection (0.05-0.12 ng/mL) and limits of quantitation (0.15-0.4 ng/mL) were achieved. Reasonable recoveries ranging from 88.1 to 103.5% were obtained. The intra-day RSDs ranging from 3.2 to 8.6% and inter-day RSDs ranging from 4.8 to 9.2% indicated good precision. With the introduction of a phospholipid-removal step, the ME ranged from 90.1 to 98.5%. The established method was successfully applied to the analysis of a blood sample from a formetanate poisoning case. This method possesses the advantages of high sensitivity, reduced matrix effects and rapidity.


Assuntos
Carbamatos/sangue , Clorfenamidina/sangue , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Praguicidas/sangue , Toluidinas/sangue , Adulto , Carbamatos/química , Carbamatos/intoxicação , Clorfenamidina/química , Clorfenamidina/intoxicação , Humanos , Limite de Detecção , Modelos Lineares , Masculino , Praguicidas/química , Praguicidas/intoxicação , Fosfolipídeos/química , Fosfolipídeos/isolamento & purificação , Reprodutibilidade dos Testes , Toluidinas/química
6.
Luminescence ; 34(1): 55-63, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30426711

RESUMO

In this study, a colorimetric method was developed for rapid and sensitive determination of gallic acid (GA) by using floral-like magnetic Fe3 O4 @MnO2 composite material with enhanced oxidase-like activity. Fe3 O4 @MnO2 composite material is able to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to a blue product (oxTMB) with apparent color change and absorbance at 652 nm. GA can reduce the oxTMB yielding a fading blue color. Based on these results, a technique is proposed to detect GA quantitatively and qualitatively with UV-vis spectroscopy and bare eyes. A low detection limit of 0.105 µM and a detection range of 0.01 to 15 µM were obtained with UV-vis spectroscopy. This methodology possesses high potential for application in determination of GA.


Assuntos
Colorimetria/métodos , Compostos Ferrosos/química , Ácido Gálico/análise , Compostos de Manganês/química , Óxidos/química , Benzidinas/química , Calibragem , Ácido Gálico/química , Cinética , Limite de Detecção , Magnetismo , Microscopia Eletrônica de Transmissão , Oxirredução , Oxirredutases/química , Espectrofotometria Ultravioleta , Água/análise , Difração de Raios X
7.
Mikrochim Acta ; 186(4): 246, 2019 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-30879229

RESUMO

A dual-mode method was developed for the determination of ascorbic acid (AA) and of ascorbic acid oxidase (AA-Ox) activity. It combines the advantages of ratiometric fluorometry and colorimetry. The assay is based on the oxidation of o-phenylenediamine (OPDA) by permanganate (KMnO4). A yellow substance (referred to as oxOPDA) with an absorption peak at 425 nm is rapidly produced in the presence of the oxidant. oxOPDA reduces the blue fluorescence of carbon dots (C-dots) peaking at 450 nm (upon 380-nm excitation), and a new emission peak is found at 565 nm. If AA is pesent, it consumes a certain fraction of KMnO4, so that less OPDA will be oxidized. This is accompanied by a decrease in the intensity of the fluorescence at 565 nm and an increase in the intensity at 450 nm. In parallel, the color of the solution changes from yellow to colorless. The determination of the activity of ascorbic acid oxidase (AA-Ox) is performed as follows: AA is oxidized by AA-Ox. This causes the fluorescence and colors to change in the opposite directions compared with AA detection. The ratio of fluorescences (I565/I450) becomes larger if the color the solution turns from colorless to yellow. Thus, the fluorescence intensity ratio (I565/I450) and colorimetric "bare-eye" readout can be used for determination of both the concentration of AA and the activity of AA-Ox. The fluorometric assay for AA has a linear range that extends from 0.6 to 40 µM, and the colorimetric assay from 0.2 to 70 µM. The respective data for AA-Ox activity are 0.04 ~ 5 mU·mL-1 and 0.04 ~ 8 mU·mL-1, respectively. The limits of detection for AA are 9 and 40 nM, and the LODs for AA-Ox activity are 0.017 and 0.012 mU·mL-1. Graphical abstract Schematic presentation of the assay. Permanganate (KMnO4) rapidly oxidizes ortho-phenylenediamine oxide to form a product (oxOPDA) having a yellow fluorescence peaking at 565 nm. The yellow color of oxOPDA can be detected visually. It also reduces the intensity of the blue fluorescence of carbon dots (C-dots) peaking at 450 nm. Ascorbic acid (AA) can consume permanganate, and this results less oxidation of OPDA. Ascorbic acid oxidase (AA-Ox) catalyzes the oxidization of AA by oxygen, and this - in turn - causes the changes in absorbance and fluorescence to change in the opposite directions.


Assuntos
Ascorbato Oxidase/sangue , Ácido Ascórbico/sangue , Carbono/química , Colorimetria/métodos , Fluorometria/métodos , Pontos Quânticos/química , Animais , Bovinos , Ensaios Enzimáticos/métodos , Limite de Detecção , Oxirredução , Fenilenodiaminas/química , Permanganato de Potássio/química
8.
Mikrochim Acta ; 186(6): 340, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31076874

RESUMO

Nanosheets (NSs; type ZIF-67) of a metal organic framework (MOF) that was prepared from 2-methylimidazole, manganese(II) and cobalt(II) were obtained by an ultrasonic hydrothermal method. Their Mn(II) doping reached as much as 11.3%. The NSs inherit high porosity, a large specific surface, and a large number of active sites. They display superior oxidase-mimicking activity and can catalyze the oxidation of tetramethylbenzidine (TMB) by molecular oxygen to form blue oxTMB. Glutathione (GSH) can reduce oxTMB, so that less blue oxTMB will be present. A simple and rapid method was established for the colorimetric determination of GSH and of the activity of GSH reductase (GR), best at a wavelength of 652 nm. The response to GSH drops linearly in the 0.1-25 µM concentration range. The activity of GR can be quantified in the 0.1 - 3 mU⋅mL-1 activity range. The respective detection limits are 0.07 µM and 0.18 mU⋅mL-1. Graphical abstract Schematic presentation of colorimetric detection of glutathione and glutathione reductase activity by the oxidase-mimicking activity of Mn-Co nanosheets in a metal organic framework.


Assuntos
Cobalto/química , Colorimetria/métodos , Glutationa Redutase/sangue , Glutationa/sangue , Imidazóis/química , Manganês/química , Estruturas Metalorgânicas/química , Benzidinas/química , Materiais Biomiméticos/química , Catálise , Humanos , Cinética , Limite de Detecção , Oxirredução , Oxirredutases/química , Oxigênio/química
9.
Mikrochim Acta ; 186(7): 414, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31187172

RESUMO

An electrochemical sensor is described for determination of uric acid (UA). Carbon-enwrapped nickel nanoparticles (Ni@BC) were coated with polydopamine (PDA) that was molecularly imprinted with UA. The biomass carbon (BC) was synthesized by one-step solid-state pyrolysis from leaves of Firmiana platanifolia. The imprinted polymer was obtained by electrodeposition of DA as the monomer. The amount of monomer, the scan cycles, pH value and adsorption time were optimized. Furthermore, the selectivity of the MIP for UA on a glassy carbon electrode (GCE) was evaluated by selectivity tests. The differential pulse voltammetric responses to UA with and without interferents were consistent. The modified GCE has a linear response in the 0.01-30 µM UA concentration range, and the limit of detection is 8 nM. The MIP electrode was applied to the analysis of UA in urine for which the initial concentrations were determined by the phosphotungstic acid kit. Recoveries ranged from 91.3 to 113.4%, with relative standard deviations between 1.3 and 9.7% (n = 3). Graphical abstract Schematic presentation of electrochemical detection of uric acid by molecularly imprinted polydopamine modified with nickel nanoparticles wrapped with carbon (Ni@BC-MIP).

10.
Mikrochim Acta ; 186(5): 272, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30963286

RESUMO

A dual-signal assay is described for the determination of trypsin based on the use of gold nanoparticles (AuNPs) that aggregate in the presence of gold nanoclusters (AuNCs) due to electrostatic interaction. This is accompanied by a color change from red to blue. However, if hemoglobin (Hb) is present in the solution, it will attach to the surface of AuNPs, thus preventing aggregation. The Hb-coated AuNPs quench the fluorescence of AuNCs. Trypsin can hydrolyze Hb and destroy the protective coating of Hb on the AuNPs. As a result, AuNP aggregation will occur after the addition of AuNCs, and the blue fluorescence of the AuNCs with 365 nm excitation and 455 nm maximum emission peak is recovered. Thus, trypsin can be determined by measurement of fluorescence emission intensity. Additionally, trypsin can be determined by the maximum absorption peak wavelength between 530 nm and 610 nm. Fluorescence increases linearly in the 10-2500 ng⋅mL-1 concentration range, and absorbance in the 20-2000 ng·mL-1 concentration range. The limits of detection are 4.6 ng·mL-1 (fluorometry) and 8.4 ng·mL-1 (colorimetry), respectively. The assay is sensitive and selective, and can be applied to the determination of trypsin in serum. Graphical abstract Schematic presentation of a fluorometric and colorimetric method for determination of trypsin. The presence of hemoglobin (Hb) protects AuNPs from agglomeration after adding AuNCs and the fluorescence of AuNCs is quenched. With trypsin present, trypsin destroys the coating of AuNPs by Hb. AuNPs aggregate again and the fluorescence recovers after the addition of AuNCs.


Assuntos
Colorimetria/métodos , Fluorometria/métodos , Ouro/química , Hemoglobinas/química , Nanopartículas Metálicas/química , Tripsina/análise , Humanos , Modelos Moleculares , Conformação Molecular , Tripsina/sangue
11.
Mikrochim Acta ; 186(12): 795, 2019 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-31734752

RESUMO

A glassy carbon electrode (GCE) was modified with nitrogen-enriched carbon frameworks decorated with palladium nanoparticles (Pd@NCF/GCEs). The modified GCE is shown to be a viable tool for determination of uric acid (UA) and dopamine (DA) in the presence of ascorbic acid (AA). The Pd@NCF was fabricated though one-step pyrolysis and characterized by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy and nitrogen-adsorption/desorption analysis. The Pd@NCF/GCE was characterized by differential pulse voltammetry (DPV). Both UA and DA have pronounced oxidation peaks (at 360 mV for UA and 180 mV for DA, all vs. Ag/AgCl) in the presence of AA. Response is linear in the 0.5-100 µM UA concentration range and in the 0.5-230 µM DA concentration range. The detection limits are 76 and 107 nM, respectively (at S/N = 3). This electrode is stable, reproducible and highly selective. It was used for UA and DA determination in spiked serum samples. Graphical abstractSchematic representation of nitrogen-enriched carbon frameworks decorated with palladium nanoparticles co-modified glassy carbon electrode for simultaneous determination of dopamine and uric acid in the presence of ascorbic acid.


Assuntos
Ácido Ascórbico/química , Carbono/química , Dopamina/sangue , Nanopartículas Metálicas/química , Ácido Úrico/sangue , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Limite de Detecção , Nanocompostos/química , Nitrogênio/química , Paládio/química , Reprodutibilidade dos Testes
12.
Anal Bioanal Chem ; 410(20): 4805-4813, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29882077

RESUMO

In this study, we developed a simple colorimetric approach to detect glutathione (GSH). The proposed approach is based on the ability of CuS-PDA-Au composite material to catalytically oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to ox-TMB to induce a blue color with an absorption peak centered at 652 nm. However, the introduction of GSH can result in a decrease in oxidized TMB; similarly, it can combine with Au nanoparticles (Au NPs) on the surface of CuS-PDA-Au composite material. Both approaches can result in a fading blue color and a reduction of the absorbance at 652 nm. Based on this above, we proposed a technique to detect GSH quantitatively and qualitatively through UV-Vis spectroscopy and naked eye, respectively. This approach demonstrates a low detection limit of 0.42 µM with a broad detection range of 5 × 10-7-1 × 10-4 M with the assistance of UV-Vis spectroscopy. More importantly, this approach is convenient and rapid. This method was successfully applied to GSH detection in human serum and cell lines. Graphical abstract A colorimetric approach has been developed by exploiting the peroxidase-like activity of CuS-polydopamine-Au composite for sensitive glutathione detection.


Assuntos
Colorimetria/métodos , Cobre/química , Glutationa/sangue , Glutationa/metabolismo , Ouro/química , Indóis/química , Peroxidases/metabolismo , Polímeros/química , Linhagem Celular , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Espectrofotometria Ultravioleta
13.
Mikrochim Acta ; 185(10): 496, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30288615

RESUMO

A composite consisting of NiCo2S4 and reduced graphene oxide (rGO) was prepared via a hydrothermal process. Compared to individual NiCo2S4 nanomaterials or reduced graphene oxide, the composite exhibits enhanced oxidase-like activity. It is found that dopamine (DA) inhibits the ability of NiCo2S4-rGO to oxidize the substrate 3,3',5',5'-tetramethylbenzidine (TMB) to form blue colored ox-TMB. Based on these findings, a colorimetric method for determination of DA was worked out. The absorption, best measured at 652 nm, increases linearly in the 0.5-100 µM DA concentration range, and the limit of detection is 0.42 µM. This method was successfully applied to the detection of DA in spiked human serum samples. Graphical abstract A hierarchical NiCo2S4-rGO composite was prepared through two-step hydrothermal process. It exhibits enhanced oxidase-like activity which, however, is inhibited by dopamine (DA). Hence, less blue colored ox-TMB is formed by oxidation of 3,3',5,5'-tetramethylbenzidine in the presence of dopamine.


Assuntos
Materiais Biomiméticos/química , Cobalto/química , Colorimetria/métodos , Dopamina/análise , Grafite/química , Níquel/química , Óxidos/química , Oxirredutases/metabolismo , Sulfetos/química , Benzidinas/química , Dopamina/sangue , Eletroquímica , Humanos , Cinética
14.
Mikrochim Acta ; 185(9): 442, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30173359

RESUMO

A turn-on fluorometric probe is described for the ß-thalassemia drug deferiprone (DFP). The probe is making use of carbon dots (C-dots) and gold nanoclusters (AuNCs) which, under 340-nm excitation, display dual emission with peaks at 445 and 592 nm. The orange fluorescence of AuNCs is quenched after the addition of Fe(III), but recovered on addition of DFP. The blue fluorescence of the C-dots, in contrast, remains unchanged. The Fe(III)-DFP complex undergoes intermolecular electron transfer under UV excitation and displays only weak peaks in the UV region. The ratio of the two fluorescences is measured which makes the probe intrinsically self-calibrated. Colorimetry is best performed at a wavelength of 280 nm. The ratio of fluorescences increases linearly in the 0.1-80 µM DFP concentration range, and the detection limit is 0.1 µM. The respective figures for colorimetry are 2.5-120 µM and 0.3 µM. The probe is highly selective for DFP. Thus, it possesses a large potential for detection of DFP in serum. Graphical abstract The orange fluorescence of gold nanoclusters (AuNCs) is quenched by Fe3+ ions but recovered on addition of deferiprone (DFP), while the change of blue fluorescence in carbon dots (C-dots) is minimal. Moreover, the Fe(III)-DFP complex undergoes intermolecular electron transfer under ultraviolet (UV) irradiation, and absorption spectra can be observed in the presence of Fe(III)-DFP detected by UV scanning. Thus, a ratiometric fluorometric and colorimetric assay is developed for DFP.


Assuntos
Carbono/química , Colorimetria/métodos , Deferiprona/análise , Fluorometria/métodos , Ouro/química , Nanopartículas Metálicas/química , Talassemia beta/tratamento farmacológico , Deferiprona/sangue , Deferiprona/uso terapêutico , Humanos , Ferro/química , Pontos Quânticos/química
15.
Mikrochim Acta ; 185(6): 281, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728777

RESUMO

A dual-read detection system is described for non-enzymatic and non-aggregation based analysis of uric acid (UA). Silver triangular nanoprisms (AgTNPs) were used as colorimetric probes, while the reduction in the fluorescence of nitrogen-doped carbon quantum dots (N-CQDs) served as the fluorometric readout. The absorption band of the AgTNPs overlaps the emission band of N-CQDs (with a peak at 440 nm). Therefore, fluorescence is reduced owing to an inner filter effect. The AgTNPs are etched if exposed to H2O2, and round nanodiscs are formed. In the presence of UA, etching of the AgTNPs is suppressed because the facets of the AgTNPs are coated with UA. The absorbance, best measured at 683 nm, increases with the concentration of the pre-added UA. The colorimetric assay works in the 0.1-45 µM UA concentration range, and the fluorometric assay between 1 and 42 µM of UA. The respective detection limits are 50 and 200 nM, respectively. The probe can be used for direct visualization of UA. The method was successfully applied to the determination of UA in urine samples. Graphical abstract The fluorescence of nitrogen-doped carbon quantum dots (N-CQDs) is quenched by AgTNPs (silver triangular nanoprisms). As the AgTNPs are etched by H2O2, fluorescence recovers in the system after H2O2 is added, and also undergoes a color change. Uric acid (UA) protects the AgTNPs from etching because the facets of the AgTNPs are coated with UA. The fluorescence of N-CQDs decreases. Thus, a dual-read probe is developed for determination of UA.

16.
Inorg Chem ; 53(24): 13089-92, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25470337

RESUMO

The interplay between unconventional superconductivity and the ordering of charge/spin density wave is one of the most vital issues in both condensed matter physics and material science. The Ti-based compound BaTi2As2O, which can be seen as the parent phase of superconducting BaTi2Sb2O, has a layered structure with a space group P4/mmm, similar to that of cuprate and iron-based superconductors. This material exhibits a charge density wave (CDW) ordering transition revealed by an anomaly at around 200 K in transport measurements. Here, we report the synthesis and systematical study of the physical properties in Cr-doped BaTi(2-x)Cr(x)As2O (x = 0-0.154) and demonstrate that the transition temperature of the CDW ordering is suppressed gradually by the doped Cr element. The magnetization measurements confirm the evolution of the CDW ordering transition. These observed behaviors are similar to that observed in iron-based superconductors, but no superconductivity emerges down to 2 K. In addition, the first-principles calculations are also carried out for well-understanding the nature of experimental observations.

17.
ACS Nano ; 16(3): 4536-4550, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35238531

RESUMO

Due to the lack of a general descriptor to predict the activity of nanomaterials, the current exploration of nanozymes mainly depended on trial-and-error strategies, which hindered the effective design of nanozymes. Here, with the help of a large number of Ni-O-Co bonds at the interface of heterostructures, a prediction descriptor was successfully determined to reveal the double enzyme-like activity mechanisms for Ni/CoMoO4. Additionally, DFT calculations revealed that interface engineering could accelerate the catalytic kinetics of the enzyme-like activity. Ni-O-Co bonds were the main active sites for enzyme-like activity. Finally, the colorimetric signal and intelligent biosensor of Ni/CoMoO4 based on deep learning were used to detect organophosphorus and ziram sensitively. Meanwhile, the in situ FTIR results uncovered the detection mechanism: the target molecules could block Ni-O-Co active sites at the heterostructure interface leading to the signal peak decreasing. This study not only provided a well design strategy for the further development of nanozymes or other advanced catalysts, but it also designed a multifunctional intelligent biosensor platform. Furthermore, it also provided preferable ideas regarding the catalytic mechanism and detection mechanism of heterostructure nanozymes.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Catálise , Domínio Catalítico , Colorimetria/métodos , Nanoestruturas/química
18.
Adv Sci (Weinh) ; 9(30): e2203681, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36031391

RESUMO

Perovskite solar cells (PSCs) suffer from significant nonradiative recombination at perovskite/charge transport layer heterojunction, seriously limiting their power conversion efficiencies. Herein, solution-processed chromium multioxide (CrOx ) is judiciously selected to construct a MAPbI3 /CrOx /Spiro-OMeTAD hole-selective heterojunction. It is demonstrated that the inserted CrOx not only effectively reduces defect sites via redox shuttle at perovskite contact, but also decreases valence band maximum (VBM)-HOMO offset between perovskite and Spiro-OMeTAD. This will diminish thermionic losses for collecting holes and thus promote charge transport across the heterojunction, suppressing both defect-assisted recombination and interface carrier recombination. As a result, a remarkable improvement of 21.21% efficiency with excellent device stability is achieved compared to 18.46% of the control device, which is among the highest efficiencies for polycrystalline MAPbI3 based n-i-p planar PSCs reported to date. These findings of this work provide new insights into novel charge-selective heterojunctions for further enhancing efficiency and stability of PSCs.

19.
J Am Chem Soc ; 133(51): 20981-94, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22141593

RESUMO

In this paper we report the crystal growth, structure determination, and magnetic properties of the 2H-perovskite related oxides, Sr(5)Co(4)O(12) and Sr(6)Co(5)O(15), as well as the charge disproportionation and associated phase transition of Sr(5)Co(4)O(12). Sr(5)Co(4)O(12) and Sr(6)Co(5)O(15) are the (m = 2, n = 3) and (m = 1, n = 1) members of the A(3m+3n)A'(n)B(3m+n)O(9m+6n) family, respectively. Sr(6)Co(5)O(15) crystallizes in the space group R32 with lattice parameters of a = 9.5020(10) Å and c = 12.379(8) Å. The structure solution shows that Sr(6)Co(5)O(15) is isostructural with Sr(6)Rh(5)O(15). Magnetic measurements do not indicate any long-range magnetic order, although the Weiss temperature of -248 K indicates the presence of dominant antiferromagnetic interactions. Sr(5)Co(4)O(12) crystallizes in the space group P-3c1 with lattice parameters of a = 9.4705(10) Å and c = 20.063(5) Å at room temperature. The single crystal structure solution revealed that the cobalt ions in the trigonal prismatic sites of Sr(5)Co(4)O(12) undergo a structural transition at ~170 K, where the cobalt atoms are in the center of the trigonal prisms below this temperature and move partially toward the faces above this temperature. This structure transition is accompanied by a change in the magnetic moment of the oxide and can be related to a valence disproportionation of the cobalt ions and a concomitant Jahn-Teller distortion. In addition, specific heat, Seebeck coefficient, electric conductivity, and magnetic measurements as well as bond valence sum calculations were carried out for Sr(5)Co(4)O(12). Sr(5)Co(4)O(12) exhibits strong magnetic anisotropy but no long-range magnetic order.

20.
Inorg Chem ; 50(20): 10310-8, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21905756

RESUMO

Single crystals of a new iron-containing oxide, Ba(4)KFe(3)O(9), were grown from a hydroxide melt, and the crystal structure was determined by single-crystal X-ray diffraction. This ferrite represents the first complex oxide containing isolated 6-membered rings of corner-sharing FeO(4) tetrahedra. Mössbauer measurements are indicative of two tetrahedral high-spin Fe(3+) coordination environments. The observed magnetic moment (~3.9 µ(B)) at 400 K is significantly lower than the calculated spin-only (~5.2 µ(B)) value, indicating the presence of strong antiferromagnetic interactions in the oxide. Our density functional theory calculations confirm the strong antiferromagnetic coupling between adjacent Fe(3+) sites within each 6-membered ring and estimate the nearest-neighbor spin-exchange integral as ~200 K; next-nearest-neighbor interactions are shown to be negligible. The lower than expected effective magnetic moment for Ba(4)KFe(3)O(9) calculated from χT data is explained as resulting from the occupation of lower-lying magnetic states in which more spins are paired. X-band (9.5 GHz) electron paramagnetic resonance (EPR) spectra of a powder sample consist of a single line at g ~ 2.01 that is characteristic of Fe(3+) ions in a tetrahedral environment, thus confirming the Mössbauer results. Further analysis of the EPR line shape reveals the presence of two types of Fe(6) magnetic species with an intensity ratio of ~1:9. Both species have Lorentzian line shapes and indistinguishable g factors but differ in their peak-to-peak line widths (δB(pp)). The line-width ratio δB(pp)(major)/δB(pp)(minor) ~ 3.6 correlates well with the ratio of the Weiss constants, θ(minor)/θ(major) ~ 4.


Assuntos
Compostos de Boro/química , Compostos Férricos/química , Compostos de Ferro/química , Óxidos/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Temperatura Alta , Fenômenos Magnéticos , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Espectroscopia de Mossbauer
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA