Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Mol Biol ; 102(6): 589-602, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32026326

RESUMO

Leaf angle is a key factor in plant architecture and crop yield. Brassinosteroids (BRs) regulate many developmental processes, especially the leaf angle in monocots. However, the BR signalling pathway is complex and includes many unknown members. Here, we propose that Oryza sativa BRASSINOSTEROID-RESPONSIVE LEAF ANGLE REGULATOR 1 (OsBLR1) encodes a bHLH transcription factor, and positively regulates BR signalling to increase the leaf angle and grain length in rice (Oryza sativa L.). Lines overexpressing OsBLR1 (blr1-D and BLR1-OE-1/2/3) had similar traits, with increased leaf angle and grain length. Conversely, OsBLR1-knockout mutants (blr1-1/2/3) had erect leaves and shorter grains. Lamina joint inclination, coleoptile elongation, and root elongation assay results indicated that these overexpression lines were more sensitive to BR, while the knockout mutants were less sensitive. There was no significant difference in the endogenous BR contents of blr1-1/2 and wild-type plants. These results suggest that OsBLR1 is involved in BR signal transduction. The blr1-D mutant, with increased cell growth in the lamina joint and smaller leaf midrib, showed significant changes in gene expression related to the cell wall and leaf development compared with wild-type plants; furthermore, the cellulose and protopectin contents in blr1-D were reduced, which resulted in the increased leaf angle and bent leaves. As the potential downstream target gene of OsBLR1, the REGULATOR OF LEAF INCLINATION1 (OsRLI1) gene expression was up-regulated in OsBLR1-overexpression lines and down-regulated in OsBLR1-knockout mutants. Moreover, we screened OsRACK1A as an interaction protein of OsBLR1 using a yeast two-hybrid assay and glutathione-S-transferase pull-down.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Brassinosteroides/metabolismo , Oryza/genética , Oryza/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas , Oryza/crescimento & desenvolvimento , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais/genética , Fatores de Transcrição
2.
Plant Biotechnol J ; 17(4): 712-723, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30183128

RESUMO

Rice grain filling rate contributes largely to grain productivity and accumulation of nutrients. MicroRNAs (miRNAs) are key regulators of development and physiology in plants and become a novel key target for engineering grain size and crop yield. However, there is little studies, so far, showing the miRNA regulation of grain filling and rice yield, in consequence. Here, we show that suppressed expression of rice miR1432 (STTM1432) significantly improves grain weight by enhancing grain filling rate and leads to an increase in overall grain yield up to 17.14% in a field trial. Molecular analysis identified rice Acyl-CoA thioesterase (OsACOT), which is conserved with ACOT13 in other species, as a major target of miR1432 by cleavage. Moreover, overexpression of miR1432-resistant form of OsACOT (OXmACOT) resembled the STTM1432 plants, that is, a large margin of an increase in grain weight up to 46.69% through improving the grain filling rate. Further study indicated that OsACOT was involved in biosynthesis of medium-chain fatty acids. In addition, RNA-seq based transcriptomic analyses of transgenic plants with altered expression of miR1432 demonstrated that downstream genes of miR1432-regulated network are involved in fatty acid metabolism and phytohormones biosynthesis and also overlap with the enrichment analysis of co-expressed genes of OsACOT, which is consistent with the increased levels of auxin and abscisic acid in STTM1432 and OXmACOT plants. Overall, miR1432-OsACOT module plays an important role in grain filling in rice, illustrating its capacity for engineering yield improvement in crops.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , Oryza/genética , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Produtos Agrícolas , Grão Comestível/enzimologia , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Especificidade de Órgãos , Oryza/enzimologia , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA de Plantas/genética , Sementes/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
3.
Planta ; 239(4): 865-75, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24395202

RESUMO

We characterized two high-molecular-weight glutenin subunit (HMW-GS) variants from Eremopyrum bonaepartis, determined their complete open reading frames, and further expressed them in a bacterial system. The variants have many novel structural features compared with typical subunits encoded by Glu-1 loci: 1Fx3.7 and 1Fy1.5 exhibit hybrid properties of x- and y-type subunits. In addition, unusual molecular mass and altered number and distribution of cysteine residues were unique features of HMW-GSs encoded by Glu-F1 from E. bonaepartis. The mature 1Fx3.7 subunit has a full length of 1,223 amino acid residues, making it the largest subunit found thus far, while 1Fy1.5 is just 496 residues. In addition, the mutated PGQQ repeat motif was found in the repetitive region of 1Fx3.7. Although it has a similar molecular mass to that previously reported for 1Dx2.2, 1Dx2.2* and 1S(sh)x2.9 subunits, 1Fx3.7 appears to have had a different evolutionary history. The N-terminal and repetitive regions have a total of four additional cysteine residues, giving 1Fx3.7 a total of eight cysteines, while 1Fy1.5 has only six cysteines because the GHCPTSPQQ nonapeptide at the end of the repetitive region is deleted. With its extra cysteine residues and the longest repetitive region, features that are relevant to good wheat quality, the 1Fx3.7 subunit gene could be an excellent candidate for applications in wheat quality improvement.


Assuntos
Variação Genética , Glutens/metabolismo , Poaceae/metabolismo , Alelos , Sequência de Aminoácidos , Clonagem Molecular , Cisteína/metabolismo , Evolução Molecular , Glutens/química , Glutens/genética , Dados de Sequência Molecular , Peso Molecular , Família Multigênica , Fases de Leitura Aberta/genética , Filogenia , Poaceae/química , Poaceae/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
4.
Genetica ; 141(4-6): 227-38, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23690246

RESUMO

Granule Bound Starch Synthase I (GBSS I) encoded by the waxy gene plays an important role in accumulating amylose during the development of starch granules in barley. In this study, we isolated and characterized waxy alleles of three waxy (GSHO 908, GSHO 1828 and NA 40) and two non-waxy barley accessions (PI 483237 and CIho 15773), estimated the expression patterns of waxy genes via Real-time quantitative PCR (RT-qPCR), investigated promoter activity by analyzing promoter-GUS expression, and examined possible effects of waxy alleles on starch granule morphology in barley accessions by scanning electron microscopy (SEM). A 193-bp insertion in intron 1, a 15-bp insertion in the coding region, and some single nucleotide polymorphic sites were detected in the waxy barley accessions. In addition, a 397-bp deletion containing the TATA box, transcription starting point, exon 1 and partial intron 1 were also identified in the waxy barley accessions. RT-qPCR analysis showed that waxy accessions had lower waxy expression levels than those of non-waxy accessions. Transient expression assays showed that GUS activity driven by the 1,029-bp promoter of the non-waxy accessions was stronger than that driven by the 822-bp promoter of the waxy accessions. SEM revealed no apparent differences of starch granule morphology between waxy and non-waxy accessions. Our results showed that the 397-bp deletion identified in the waxy barley accessions is likely responsible for the reduction of waxy transcript, leading to lower concentrations of GBSS I protein thus lower amylose content.


Assuntos
Alelos , Genes de Plantas , Hordeum/genética , Amilose/química , Metabolismo dos Carboidratos/genética , Expressão Gênica , Ordem dos Genes , Hordeum/metabolismo , Motivos de Nucleotídeos , Polimorfismo Genético , Regiões Promotoras Genéticas , Deleção de Sequência , Amido/ultraestrutura , Sintase do Amido/química , Sintase do Amido/genética , Ceras
5.
BMC Plant Biol ; 12: 73, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22646663

RESUMO

BACKGROUND: High molecular weight glutenin subunits (HMW-GSs), encoded by the genes at Glu-1 loci in wheat and its related species, are significant in the determination of grain processing quality. However, the diversity and variations of HMW-GSs are relatively low in bread wheat. More interests are now focused on wheat wild relatives in Triticeae. The genus Aegilops represents an important germplasm for novel HWM-GSs and other useful genes for wheat genetic improvement. RESULTS: Six novel Glu-1 alleles and HMW-GSs were identified and characterized from three species of Aegilops section Sitopsis (S genome). Both open reading frames (ORFs) and promoter regions of these Glu-1 alleles were sequenced and characterized. The ORFs of Sitopsis Glu-1 genes are approximately 2.9 kb and 2.3 kb for x-type and y-type subunits, respectively. Although the primary structures of Sitopsis HMW-GSs are similar to those of previously reported ones, all six x-type or y-type subunits have the large fragment insertions. Our comparative analyses of the deduced amino acid sequences verified that Aegilops section Sitopsis species encode novel HMW-GSs with their molecular weights larger than almost all other known HMW-GSs. The Glu-1 promoter sequences share the high homology among S genome. Our phylogenetic analyses by both network and NJ tree indicated that there is a close phylogenetic evolutionary relationship of x-type and y-type subunit between S and D genome. CONCLUSIONS: The large molecular weight of HMW-GSs from S genome is a unique feature identified in this study. Such large subunits are resulted from the duplications of repetitive domains in Sitopsis HMW-GSs. The unequal crossover events are the most likely mechanism of variations in glutenin subunits. The S genome-encoded subunits, 1Dx2.2 and 1Dx2.2* have independent origins, although they share similar evolutionary mechanism. As HMW-GSs play a key role in wheat baking quality, these large Sitopsis glutenin subunits can be used as special genetic resources for wheat quality improvement.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Glutens/genética , Poaceae/genética , Triticum/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Cruzamento , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Glutens/isolamento & purificação , Glutens/metabolismo , Dados de Sequência Molecular , Peso Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Poaceae/metabolismo , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Transgenes , Triticum/metabolismo
6.
Genetica ; 140(7-9): 325-35, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23054223

RESUMO

In this study, we report the expression of HMW-GSs in 87 accessions of tetraploid wheat, the characterization of three inactive and one active HMW glutenin genes, and the functional verification of HMW-GSs by promoter-GUS expression. SDS-PAGE profiles revealed that tetraploid wheat has many different combinations of HMW-GSs and the number of subunits varies from 1 to 4. HMW glutenin genes at the Glu-A1x, Glu-A1y and Glu-B1y loci exhibited different frequencies of inaction while the Glu-B1x allele was expressed in all 87 accessions. Gene cloning showed that only 1Bx (Tdu-e) could express a full-length protein and its deduced protein sequence has the typical primary structure but with fewer cysteine residues. The expression of the other three HMW glutenin genes has been disrupted by stop codons in their repetitive domains. Besides short indels or mutations of one or more bases, an 85-bp deletion and a 185-bp insertion were found in the promoter regions of 1Ay (Tdu-s) and 1Bx (Tdu-e). The transient expression of promoter-GUS constructs indicated that the 1Ay promoter can drive expression of the GUS gene. We conclude that defects (stop codons or the insertion of large transposon-like elements) in the coding regions may be the most probable cause for the inaction of the HMW glutenin genes.


Assuntos
Genes de Plantas , Glutens/genética , Tetraploidia , Triticum/genética , Clonagem Molecular , DNA de Plantas/química , Eletroforese em Gel de Poliacrilamida , Peso Molecular , Filogenia
7.
Environ Sci Pollut Res Int ; 28(12): 15021-15031, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33221993

RESUMO

As representative varieties of the four phases of the super rice breeding project in China, Lianyoupei 9 (LYP9), Y Liangyou 1 (YLY1), Y Liangyou 2 (YLY2), and Y Liangyou 900 (YLY900) achieved higher yield under optimal cultivation techniques. However, the impact of these high-yield rice varieties on greenhouse gas (GHG) emissions under high-yield cultivation management practices remains poorly understood. In this study, we conducted field experiments to investigate CH4 and N2O emissions from paddies containing four elite rice varieties, managed with field drying at the ineffective tillering stage and alternate wet/dry irrigation at the grain-filling stage. The plants were fertilised with nitrogen (N) at three different rates. The results showed that CH4 emission was highest at the tillering stage. N2O emission flux was dramatically increased by field drying at the ineffective tillering stage, and with the rate of N application. Rice variety was among the most important factors affecting CH4 emission and global warming potential (GWP). N2O emission was mainly related to N application rate rather than rice variety. YLY2 achieved higher yield than LYP9, YLY1, and YLY900, and lower GHG emission than YLY900. Our results indicate that rice variety should be considered as a key factor to reduce GHG emissions from rice paddies under high-yield cultivation practices. Based on its high yield and low GHG emission at the study site, YLY2 may be an optimal rice variety.


Assuntos
Óxido Nitroso , Oryza , Agricultura , China , Aquecimento Global , Metano/análise , Óxido Nitroso/análise , Melhoramento Vegetal , Solo
8.
Gene ; 537(1): 63-9, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24368329

RESUMO

The WUSCHEL (WUS)-related homeobox (WOX) gene family plays an important role in coordinating gene transcription in the early phases of embryogenesis. In this study, we isolated and characterized WOX5 from common wheat and its relatives Triticum monococcum, Triticum urartu, Aegilops speltoides, Aegilops searsii, Aegilops sharonensis, Aegilops longissima, Aegilops bicornis, Aegilops tauschii, and Triticum turgidum. The size of the characterized WOX5 alleles ranged from 1029 to 1038 bp and encompassed the complete open reading frame (ORF) as well as 5' upstream and 3' downstream sequences. Domain prediction analysis showed that the putative primary structures of wheat WOX5 protein include the highly conserved homeodomain besides the WUS-box domain and the EAR-like domain, which is/are present in some members of the WOX protein family. The full-length ORF was subcloned into a prokaryotic expression vector pET30a, and an approximate 26-kDa protein was successfully expressed in Escherichia coli BL21 (DE3) cells with IPTG induction. The WOX5 genes from wheat-related species exhibit a similar structure to and high sequence similarity with WOX5 genes from common wheat. The degree of divergence and phylogenetic tree analysis among WOX5 alleles suggested the existence of three homoeologous copies in the A, B, or D genome of common wheat. Quantitative PCR results showed that TaWOX5 was primarily expressed in the root and calli induced by auxin and cytokinin, indicating that TaWOX5 may play a role related to root formation or development and is associated with hormone regulation in somatic embryogenesis.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Triticum/genética , Sequência de Aminoácidos , Escherichia coli/genética , Genes Homeobox , Ácidos Indolacéticos/metabolismo , Dados de Sequência Molecular , Família Multigênica , Fases de Leitura Aberta , Filogenia , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Poaceae/genética , Estrutura Terciária de Proteína
9.
Springerplus ; 2(1): 152, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23687628

RESUMO

The sequences of x-type high-molecular-weight glutenin promoter (x-HGP) from 21 diploid Triticeae species were cloned and sequenced. The lengths of x-HGP varied from 897 to 955 bp, and there are 329 variable sites including 105 singleton sites and 224 polymorphic sites. Genetic distances of pairwise X-HGP sequences ranged from 0.30 to 16.40% within 21 species and four outgroup species of Hordeum. All five recognized regulatory elements emerged and showed higher conservation in the x-HGP of 21 Triticeae species. Most variations were distributed in the regions among or between regulatory elements. A 22 bp and 50 bp insertions which were the copy of adjacent region with minor change, were found in the x-HGP of Ae. speltoides and Ps. Huashanica, and could be regarded as genome specific indels. The phylogeny of media-joining network and neighbour-joining tree both supported the topology were composed of three sperate clusters. Especially, the cluster I comprising the x-HGP sequences of Aegilops, Triticum, Henrardia, Agropyron and Taeniatherum was highly supporting by both network and NJ tree. As conferring to higher level and temporal and spatial expression, x-HGP can used as the source of promoter for constructing transgenic plants which allow endosperm-specific expression of exogenous gene on higher level. In addition, the x-HGP has enough conservation and variation; so it should be valuable in phylogenetic analyses of Triticeae family members.

10.
Ying Yong Sheng Tai Xue Bao ; 20(2): 320-4, 2009 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-19459370

RESUMO

To understand the effects of silicon on the growth and development of rice roots, a hydroponic experiment with 3 levels of silicon, i.e., no silicon (T1), 1.25 mmol silicon x L(-1) (T2), and 2 mmol silicon x L(-1) (T3), was conducted, using rice cultivars TN1 and Baixiangjing with high silicon uptake efficiency and Juanyejing and Hitomebore with low silicon uptake efficiency as test materials. The results showed that with the increase of silicon supply, the root dry mass, root-shoot ratio, lateral root number, and total root length of all test rice cultivars decreased, while the dry mass of above-ground parts, root number, and root diameter increased. Relatively higher silicon supply was beneficial to the differentiation and development of indefinite roots, but not favorable to the lateral roots. Under lower silicon supply, the root dry mass and root-shoot ratio of TN1 and Baixiangjing were significantly higher than those of Juanyejing and Hitomebore. Furthermore, the number of lateral roots and the total root length of Baixiangjing were also significantly higher than those of Juanyejing and Hitomebore. It was concluded that total root length and lateral root number were the main factors affecting rice silicon uptake efficiency.


Assuntos
Oryza/metabolismo , Raízes de Plantas/metabolismo , Silício/metabolismo , Absorção , Genótipo , Oryza/genética , Oryza/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Silício/análise , Silício/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA