Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cell ; 184(5): 1362-1376.e18, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545087

RESUMO

Lungfishes are the closest extant relatives of tetrapods and preserve ancestral traits linked with the water-to-land transition. However, their huge genome sizes have hindered understanding of this key transition in evolution. Here, we report a 40-Gb chromosome-level assembly of the African lungfish (Protopterus annectens) genome, which is the largest genome assembly ever reported and has a contig and chromosome N50 of 1.60 Mb and 2.81 Gb, respectively. The large size of the lungfish genome is due mainly to retrotransposons. Genes with ultra-long length show similar expression levels to other genes, indicating that lungfishes have evolved high transcription efficacy to keep gene expression balanced. Together with transcriptome and experimental data, we identified potential genes and regulatory elements related to such terrestrial adaptation traits as pulmonary surfactant, anxiolytic ability, pentadactyl limbs, and pharyngeal remodeling. Our results provide insights and key resources for understanding the evolutionary pathway leading from fishes to humans.


Assuntos
Adaptação Biológica , Evolução Biológica , Peixes/genética , Sequenciamento Completo do Genoma , Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/fisiologia , Animais , Extremidades/anatomia & histologia , Extremidades/fisiologia , Peixes/anatomia & histologia , Peixes/classificação , Peixes/fisiologia , Filogenia , Fenômenos Fisiológicos Respiratórios , Sistema Respiratório/anatomia & histologia , Vertebrados/genética
2.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38174583

RESUMO

Bioluminescence in beetles has long fascinated biologists, with diverse applications in biotechnology. To date, however, our understanding of its evolutionary origin and functional variation mechanisms remains poor. To address these questions, we obtained high-quality reference genomes of luminous and nonluminous beetles in 6 Elateroidea families. We then reconstructed a robust phylogenetic relationship for all luminous families and related nonluminous families. Comparative genomic analyses and biochemical functional experiments suggested that gene evolution within Elateroidea played a crucial role in the origin of bioluminescence, with multiple parallel origins observed in the luminous beetle families. While most luciferase-like proteins exhibited a conserved nonluminous amino acid pattern (TLA346 to 348) in the luciferin-binding sites, luciferases in the different luminous beetle families showed divergent luminous patterns at these sites (TSA/CCA/CSA/LVA). Comparisons of the structural and enzymatic properties of ancestral, extant, and site-directed mutant luciferases further reinforced the important role of these sites in the trade-off between acyl-CoA synthetase and luciferase activities. Furthermore, the evolution of bioluminescent color demonstrated a tendency toward hypsochromic shifts and variations among the luminous families. Taken together, our results revealed multiple parallel origins of bioluminescence and functional divergence within the beetle bioluminescent system.


Assuntos
Besouros , Animais , Humanos , Besouros/genética , Filogenia , Sequência de Aminoácidos , Luciferases/genética , Luciferases/química , Luciferases/metabolismo , Sítios de Ligação
3.
Photochem Photobiol Sci ; 23(4): 719-729, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441849

RESUMO

The bioluminescence system of luminescent beetles has extensive applications in biological imaging, protein labeling and drug screening. To explore wild luciferases with excellent catalytic activity and thermal stability, we cloned the luciferase of Pygoluciola qingyu, one species living in areas of high temperature and with strong bioluminescence, by combining transcriptomic sequencing and reverse transcription polymerase chain reaction (RT-PCR). The total length of luciferase gene is 1638 bp and the luciferase consists 544 amino acids. The recombinant P. qingyu luciferase was produced in vitro and its characteristics were compared with those of eight luciferases from China firefly species and two commercial luciferases. Compared with these luciferases, the P. qingyu luciferase shows the highest luminescence activity at room temperature (about 25-28 â„ƒ) with similar KM value for D-luciferin and ATP to the Photinus pyralis luciferase. The P. qingyu luciferase activity was highest at 35 â„ƒ and can keep high activity at 30-40 â„ƒ, which suggests the potential of P. qingyu luciferase for in vivo and cell application. Our results provide new insights into P. qingyu luciferase and give a new resource for the application of luciferases.


Assuntos
Besouros , Vaga-Lumes , Animais , Vaga-Lumes/genética , Besouros/genética , Besouros/metabolismo , Sequência de Aminoácidos , Luciferases/química , Luciferases de Vaga-Lume/metabolismo , Clonagem Molecular , Medições Luminescentes
4.
Arch Insect Biochem Physiol ; 115(4): e22113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628056

RESUMO

The efficiency of RNA interference (RNAi) has always limited the research on the phenotype innovation of Lepidoptera insects. Previous studies have found that double-stranded RNA-degrading enzyme (dsRNase) is an important factor in RNAi efficiency, but there have been no relevant reports in butterflies (Papilionoidea). Papilio xuthus is one of the important models in butterflies with an extensive experimental application value. To explore the effect of dsRNase in the RNAi efficiency on butterflies, six dsRNase genes (PxdsRNase 1-6) were identified in P. xuthus genome, and their dsRNA-degrading activities were subsequently detected by ex vivo assays. The result shows that the dsRNA-degrading ability of gut content (<1 h) was higher than hemolymph content (>12 h). We then investigated the expression patterns of these PxdsRNase genes during different tissues and developmental stages, and related RNAi experiments were carried out. Our results show that different PxdsRNase genes had different expression levels at different developmental stages and tissues. The expression of PxdsRNase2, PxdsRNase3, and PxdsRNase6 were upregulated significantly through dsGFP injection, and PxdsRNase genes can be silenced effectively by injecting their corresponding dsRNA. RNAi-of-RNAi studies with PxEbony, which acts as a reporter gene, observed that silencing PxdsRNase genes can increase RNAi efficiency significantly. These results confirm that silencing dsRNase genes can improve RNAi efficiency in P. xuthus significantly, providing a reference for the functional study of insects such as butterflies with low RNAi efficiency.


Assuntos
Borboletas , Animais , Borboletas/genética , Interferência de RNA , RNA de Cadeia Dupla , Insetos/genética , Inativação Gênica
5.
Arch Insect Biochem Physiol ; 111(1): e21957, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35933719

RESUMO

The Elateridae family (click beetles) represents a highly diverse lineage that possesses a specialized clicking mechanism to startle predators. At present, however, phylogenetic relationships, especially among recognized subfamilies, remain contentious. Mitochondrial genomes (mitogenomes) can help resolve previously intractable phylogenetic relationships using morphological or limited molecular data. Here, we report the complete mitogenome of Pectocera sp. (Elateridae: Dendrometrinae: Oxynopterini), which was 15,962 bp in length and showed a typical gene number and order as most beetle mitogenomes, including 13 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 noncoding control region (AT-rich region). Comparative genomic analyses showed a high degree of feature similarity among Pectocera sp. and other click beetles. Evolutionary analysis of all PCGs based on the nonsynonymous/synonymous substitution rate ratio (ω) indicated that cox1 and atp8 exhibited the lowest and highest evolutionary rates, respectively, and that the evolutionary rates of all PCGs, except for cox3, nad2, and nad3, were lower than the average ω of click beetles. Phylogenetic analyses based on concatenated and coalescent approaches indicated that Pectocera sp. was sister to Campsosternus auratus in the same tribe (Oxynopterini) with high support. This study offers insight into the mitogenomic basis of Pectocera sp. and provides an important data resource for exploring the taxonomy, phylogeny, and evolution of click beetles.


Assuntos
Besouros , Genoma Mitocondrial , Animais , Filogenia , RNA de Transferência
6.
Arch Insect Biochem Physiol ; 111(2): e21952, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35909310

RESUMO

Papilio machaon was assigned as the type species for all butterflies by Linnaeus and P. bianor is a congener but exhibits a great difference in morphology (especially larva and adult color pattern) and larval host plants from P. machaon. Thus, they are the ideal models to investigate genetic mechanisms underlying morphology and plasticity between congeners. The reference genomes of both species were dissected in our previous studies, but little is known about their regulatory genome and the epigenetic regulation of gene expression throughout developmental stages. Here, we profiled the chromatin accessibility and gene expression of three developmental stages (the 4th instar larva [L4], the 5th instar larva [L5], and pupa [P]) using transposase accessible chromatin sequencing (ATAC-seq) and RNA-seq. Results showed that many accessible chromatin peaks were identified at three developmental stages (peak number, P. machaon: 44,977 [L4], 36,919 [L5], 47,147 [P]; P. bianor: 20,341 [L4], 44,668 [L5], 62,249 [P]). Moreover, the number of differentially accessible peaks and differentially expressed genes between larval stages of each butterfly species are significantly fewer than that between larval and pupal stages, suggesting a higher similarity within larvae and a significant difference between larvae and pupae. This study added the annotated information of chromatin accessibility genome-wide of the two papilionid species and will promote the investigation of gene regulation in butterfly evolution.


Assuntos
Borboletas , Animais , Borboletas/genética , Cromatina/genética , Epigênese Genética , Larva/genética , Pupa/genética
7.
PLoS Genet ; 15(1): e1007616, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668559

RESUMO

Like other domesticates, the efficient utilization of nitrogen resources is also important for the only fully domesticated insect, the silkworm. Deciphering the way in which artificial selection acts on the silkworm genome to improve the utilization of nitrogen resources and to advance human-favored domestication traits, will provide clues from a unique insect model for understanding the general rules of Darwin's evolutionary theory on domestication. Storage proteins (SPs), which belong to a hemocyanin superfamily, basically serve as a source of amino acids and nitrogen during metamorphosis and reproduction in insects. In this study, through blast searching on the silkworm genome and further screening of the artificial selection signature on silkworm SPs, we discovered a candidate domestication gene, i.e., the methionine-rich storage protein 1 (SP1), which is clearly divergent from other storage proteins and exhibits increased expression in the ova of domestic silkworms. Knockout of SP1 via the CRISPR/Cas9 technique resulted in a dramatic decrease in egg hatchability, without obvious impact on egg production, which was similar to the effect in the wild silkworm compared with the domestic type. Larval development and metamorphosis were not affected by SP1 knockout. Comprehensive ova comparative transcriptomes indicated significant higher expression of genes encoding vitellogenin, chorions, and structural components in the extracellular matrix (ECM)-interaction pathway, enzymes in folate biosynthesis, and notably hormone synthesis in the domestic silkworm, compared to both the SP1 mutant and the wild silkworm. Moreover, compared with the wild silkworms, the domestic one also showed generally up-regulated expression of genes enriched in the structural constituent of ribosome and amide, as well as peptide biosynthesis. This study exemplified a novel case in which artificial selection could act directly on nitrogen resource proteins, further affecting egg nutrients and eggshell formation possibly through a hormone signaling mediated regulatory network and the activation of ribosomes, resulting in improved biosynthesis and increased hatchability during domestication. These findings shed new light on both the understanding of artificial selection and silkworm breeding from the perspective of nitrogen and amino acid resources.


Assuntos
Evolução Molecular , Proteínas de Insetos/genética , Metamorfose Biológica/genética , Seleção Genética , Animais , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Sistemas CRISPR-Cas , Domesticação , Matriz Extracelular/genética , Técnicas de Inativação de Genes , Genoma de Inseto/genética , Desequilíbrio de Ligação , Filogenia , Transcriptoma/genética
8.
BMC Genomics ; 22(1): 120, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596834

RESUMO

BACKGROUND: Insect body coloration often functions as camouflage to survive from predators or mate selection. Transportation of pigment precursors or related metabolites from cytoplasm to subcellular pigment granules is one of the key steps in insect pigmentation and usually executed via such transporter proteins as the ATP-binding cassette (ABC) transmembrane transporters and small G-proteins (e.g. Rab protein). However, little is known about the copy numbers of pigment transporter genes in the butterfly genomes and about the roles of pigment transporters in the development of swallowtail butterflies. RESULTS: Here, we have identified 56 ABC transporters and 58 Rab members in the genome of swallowtail butterfly Papilio xuthus. This is the first case of genome-wide gene copy number identification of ABC transporters in swallowtail butterflies and Rab family in lepidopteran insects. Aiming to investigate the contribution of the five genes which are orthologous to well-studied pigment transporters (ABCG: white, scarlet, brown and ok; Rab: lightoid) of fruit fly or silkworm during the development of swallowtail butterflies, we performed CRISPR/Cas9 gene-editing of these genes using P. xuthus as a model and sequenced the transcriptomes of their morphological mutants. Our results indicate that the disruption of each gene produced mutated phenotypes in the colors of larvae (cuticle, testis) and/or adult eyes in G0 individuals but have no effect on wing color. The transcriptomic data demonstrated that mutations induced by CRISPR/Cas9 can lead to the accumulation of abnormal transcripts and the decrease or dosage compensation of normal transcripts at gene expression level. Comparative transcriptomes revealed 606 ~ 772 differentially expressed genes (DEGs) in the mutants of four ABCG transporters and 1443 DEGs in the mutants of lightoid. GO and KEGG enrichment analysis showed that DEGs in ABCG transporter mutants enriched to the oxidoreductase activity, heme binding, iron ion binding process possibly related to the color display, and DEGs in lightoid mutants are enriched in glycoprotein binding and protein kinases. CONCLUSIONS: Our data indicated these transporter proteins play an important role in body color of P. xuthus. Our study provides new insights into the function of ABC transporters and small G-proteins in the morphological development of butterflies.


Assuntos
Bombyx , Borboletas , Animais , Borboletas/genética , Expressão Gênica , Larva , Masculino , Pigmentação/genética
9.
Photochem Photobiol Sci ; 20(8): 1053-1067, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34347281

RESUMO

Firefly adult bioluminescence functions as signal communication between sexes. How sympatric sibling species with similar glow pattern recognize their conspecific mates remains largely unknown. To better understand the role of the luciferases of sympatric fireflies in recognizing mates, we cloned the luciferase genes of three sympatric forest dwelling fireflies (Diaphanes nubilus, Diaphanes pectinealis, and Diaphanes sp2) and evaluated their enzyme characteristics. Our data show that the amino acid (AA) sequences of all three luciferases are highly conserved, including the identities (D. nubilus vs D. pectinealis: 99%; D. nubilus vs Diaphanes sp2: 98.5%; D. pectinealis vs Diaphanes sp2: 99.4%) and the protein structures. Three recombinant luciferases produced in vitro all possess significant luminescence activity at pH 7.8, and similar maximum emission spectrum (D. nubilus: 562 nm; D. pectinealis and Diaphanes sp2: 564 nm). They show the highest activity at 10 °C (D. pectinealis, Diaphanes sp2) and 15 °C (D. nubilus), and completely inactivation at 45 °C. Their KM for D-luciferin and ATP were 2.7 µM and 92 µM (D. nubilus), 3.7 µM and 49 µM (D. pectinealis), 3.5 µM and 46 µM (Diaphanes sp2). Phylogenetic analyses support that D. nubilus is sister to D. pectinealis with Diaphanes sp2 at their base, which further cluster with Pyrocoelia. All combined data indicate that sympatric Diaphanes species have similar luciferase characteristics, suggesting that other strategies (e.g., pheromone, active time, etc.) may be adopted to recognize mates. Our data provide new insights into Diaphanes luciferases and their evolution.


Assuntos
Evolução Molecular , Vaga-Lumes/genética , Luciferases/genética , Simpatria , Animais , Clonagem Molecular
10.
BMC Evol Biol ; 19(1): 19, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30634914

RESUMO

BACKGROUND: The genetic mechanisms underlying the domestication of animals and plants have been of great interest to biologists since Darwin. To date, little is known about the global pattern of gene expression changes during domestication. RESULTS: We generated and collected transcriptome data for seven pairs of domestic animals and plants including dog, silkworm, chicken, rice, cotton, soybean and maize and their wild progenitors and compared the expression profiles between the domestic and wild species. Intriguingly, although the number of expressed genes varied little, the domestic species generally exhibited lower gene expression diversity than did the wild species, and this lower diversity was observed for both domestic plants and different kinds of domestic animals including insect, bird and mammal in the whole-genome gene set (WGGS), candidate selected gene set (CSGS) and non-CSGS, with CSGS exhibiting a higher degree of decreased expression diversity. Moreover, different from previous reports which found 2 to 4% of genes were selected by human, we identified 6892 candidate selected genes accounting for 7.57% of the whole-genome genes in rice and revealed that fewer than 8% of the whole-genome genes had been affected by domestication. CONCLUSIONS: Our results showed that domestication affected the pattern of variation in gene expression throughout the genome and generally decreased the expression diversity across species, and this decrease may have been associated with decreased genetic diversity. This pattern might have profound effects on the phenotypic and physiological changes of domestic animals and plants and provide insights into the genetic mechanisms at the transcriptome level other than decreased genetic diversity and increased linkage disequilibrium underpinning artificial selection.


Assuntos
Domesticação , Regulação da Expressão Gênica , Variação Genética , Plantas/genética , Animais , Bombyx/genética , Galinhas/genética , Bases de Dados Genéticas , Cães/genética , Humanos , Desequilíbrio de Ligação/genética , Seleção Genética , Transcriptoma/genética , Zea mays/genética
11.
Mol Phylogenet Evol ; 140: 106600, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31445200

RESUMO

Fireflies are one of the best-known examples of luminescent organisms. The limited geographic distribution and rarity of some firefly genera have hindered molecular phylogenetic analysis, resulting in uncertainty in regard to firefly phylogeny. Here, using genome skimming next-generation sequencing, we sequenced 23 Asian firefly species from 15 genera (Lampyridae: 14; Rhagophthalmidae: one) and assembled their mitochondrial genomes (mitogenomes) and nuclear ribosomal DNA (rDNA) repeat unit. The mitogenomes (including 15 mitochondrial genes: COX1-3, ATP6&8, ND1-6&4L, CYTB, 12S, and 16S) were recovered for almost all 23 species; furthermore, three regions of the nuclear rDNA repeat unit (18S, 28S, and 5.8S) were recovered for 22 out of the 23 species. The mitogenomes of 11 genera and 22 species as well as the complete rDNA from 22 species are reported here for the first time. Combined with previously published sequences of mitochondrial and rDNA coding regions, 166 species (170 populations with four overlapping in Lampyridae) were included in the current analyses. We selected different species groups and coding regions to infer phylogenies, and then employed tree certainty (TC) and internode certainty (IC) to quantify any phylogenetic incongruence. Phylogenetic analysis of 18 coding regions (15 mitochondrial genes and three regions of the nuclear rDNA repeat unit) from different species groups showed that the 144-species selection group (excluding 22 species outside Lampyridae) had relatively high TC (101.39). Further phylogenetic analysis of the 144 species using different coding regions indicated that the phylogeny of the 13 coding regions (10 mitochondrial genes: COX1-2, ATP6&8, ND1, ND4-5, CYTB, 12S and 16S; three rDNA regions: 18S, 5.8S, and 28S) demonstrated higher TC (103.02) than the phylogenies based on the 18 coding regions (TC = 101.39), conserved-regions (c-regions, i.e., 12S, 16S, COX1, 18S, and 28S) (TC = 95.11), or conserved-sites (c-sites, TC = 92.31) for the mitochondrial genes. In contrast, the c-sites strengthened the deeper nodes of the 144-species phylogeny compared to the c-regions. All of the 144-species phylogenies using different coding regions (except the c-regions) consistently recovered the monophyly of each of the three luminous families and their combination (Lampyridae, Rhagophthalmidae, and Phengodidae) with high IC support. Our phylogenetic analyses clarified the position of firefly genera Lamprigera, Vesta, Stenocladius, Pyrocoelia, Diaphanes, Abscondita, Pygoluciola, Emeia, Pristolycus, and Menghuoius. We also inferred the evolutionary pattern of adult bioluminescence in Lampyridae based on the phylogenies of 166 and 144 species. Our data suggest that the common ancestor of Lampyridae possessed adult bioluminescence, with a higher loss rate than gain rate of bioluminescence during its lineage evolution. Our results provide insight into Asian firefly phylogeny, and also enrich mitogenome and rDNA data resources for further study.


Assuntos
Vaga-Lumes/classificação , Luminescência , Filogenia , Animais , DNA Ribossômico/genética , Genes Mitocondriais , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Reprodutibilidade dos Testes , Especificidade da Espécie
12.
Biochem Biophys Res Commun ; 495(1): 1395-1402, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180012

RESUMO

Sea cucumbers, one main class of Echinoderms, have a very fast and drastic metamorphosis process during their development. However, the molecular basis under this process remains largely unknown. Here we systematically examined the gene expression profiles of Japanese common sea cucumber (Apostichopus japonicus) for the first time by RNA sequencing across 16 developmental time points from fertilized egg to juvenile stage. Based on the weighted gene co-expression network analysis (WGCNA), we identified 21 modules. Among them, MEdarkmagenta was highly expressed and correlated with the early metamorphosis process from late auricularia to doliolaria larva. Furthermore, gene enrichment and differentially expressed gene analysis identified several genes in the module that may play key roles in the metamorphosis process. Our results not only provide a molecular basis for experimentally studying the development and morphological complexity of sea cucumber, but also lay a foundation for improving its emergence rate.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Redes e Vias Metabólicas/fisiologia , Metamorfose Biológica/fisiologia , Modelos Biológicos , Mapeamento de Interação de Proteínas/métodos , Proteoma/metabolismo , Pepinos-do-Mar/fisiologia , Animais , Simulação por Computador , Perfilação da Expressão Gênica/métodos
13.
Genetica ; 145(4-5): 431-440, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28791584

RESUMO

Coraciiformes comprises 209 species belonging to ten families with significant divergence on external morphologies and life styles. The phylogenetic placement of Coraciiformes was still in debate. Here, we determined the complete mitochondrial genomes (mitogenomes) of Crested Kingfisher (Ceryle rudis) and Black-capped Kingfisher (Halcyon pileata). The mitogenomes were 17,355 bp (C. rudis) and 17,612 bp (H. pileata) in length, and both of them contained 37 genes (two rRNA genes, 22 tRNA genes and 13 protein-coding genes) and one control region. The gene organizations and characters of two mitogenomes were similar with those of other mitogenomes in Coraciiformes, however the sizes and nucleotide composition of control regions in different mitogenomes were significantly different. Phylogenetic trees were constructed with both Bayesian and Maximum Likelihood methods based on mitogenome sequences from 11 families of six orders. The trees based on two different data sets supported the basal position of Psittacidae (Psittaciformes), the closest relationship between Cuculiformes (Cuculidae) and Trogoniformes (Trogonidae), and the close relationship between Coraciiformes and Piciformes. The phylogenetic placement of the clade including Cuculiformes and Trogoniformes has not been resolved in present study, which need further investigations with more molecular markers and species. The mitogenome sequences presented here provided valuable data for further taxonomic studies on Coraciiformes and other related groups.


Assuntos
Aves/genética , Genoma Mitocondrial , Animais , Sequência de Bases , Aves/classificação , China , Códon , Filogenia , Proteínas/genética , RNA Ribossômico , RNA de Transferência
14.
Sci Data ; 11(1): 396, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637640

RESUMO

Stag beetles (Coleoptera: Lucanidae) represent a significant saproxylic assemblage in forest ecosystems and are noted for their enlarged mandibles and male polymorphism. Despite their relevance as ideal models for the study of exaggerated mandibles that aid in attracting mates, the regulatory mechanisms associated with these traits remain understudied, and restricted by the lack of high-quality reference genomes for stag beetles. To address this limitation, we successfully assembled the first chromosome-level genome of a representative species Dorcus hopei. The genome was 496.58 Mb in length, with a scaffold N50 size of 54.61 Mb, BUSCO values of 99.8%, and 96.8% of scaffolds anchored to nine pairs of chromosomes. We identified 285.27 Mb (57.45%) of repeat sequences and annotated 11,231 protein-coding genes. This genome will be a valuable resource for further understanding the evolution and ecology of stag beetles, and provides a basis for studying the mechanisms of exaggerated mandibles through comparative analysis.


Assuntos
Besouros , Genoma de Inseto , Animais , Masculino , Besouros/genética , Florestas , Filogenia , Polimorfismo Genético , Cromossomos de Insetos
15.
PLoS Genet ; 6(12): e1001255, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21203494

RESUMO

Gene duplication is supposed to be the major source for genetic innovations. However, how a new duplicate gene acquires functions by integrating into a pathway and results in adaptively important phenotypes has remained largely unknown. Here, we investigated the biological roles and the underlying molecular mechanism of the young kep1 gene family in the Drosophila melanogaster species subgroup to understand the origin and evolution of new genes with new functions. Sequence and expression analysis demonstrates that one of the new duplicates, nsr (novel spermatogenesis regulator), exhibits positive selection signals and novel subcellular localization pattern. Targeted mutagenesis and whole-transcriptome sequencing analysis provide evidence that nsr is required for male reproduction associated with sperm individualization, coiling, and structural integrity of the sperm axoneme via regulation of several Y chromosome fertility genes post-transcriptionally. The absence of nsr-like expression pattern and the presence of the corresponding cis-regulatory elements of the parental gene kep1 in the pre-duplication species Drosophila yakuba indicate that kep1 might not be ancestrally required for male functions and that nsr possibly has experienced the neofunctionalization process, facilitated by changes of trans-regulatory repertories. These findings not only present a comprehensive picture about the evolution of a new duplicate gene but also show that recently originated duplicate genes can acquire multiple biological roles and establish novel functional pathways by regulating essential genes.


Assuntos
Drosophila/genética , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Espermatogênese , Sequência de Aminoácidos , Animais , Drosophila/classificação , Drosophila/citologia , Drosophila/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Evolução Molecular , Feminino , Fertilidade , Masculino , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Especificidade da Espécie , Espermatozoides/citologia , Espermatozoides/metabolismo
16.
BMC Genomics ; 13: 109, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22439699

RESUMO

BACKGROUND: Drosophila albomicans is a unique model organism for studying both sex chromosome and B chromosome evolution. A pair of its autosomes comprising roughly 40% of the whole genome has fused to the ancient X and Y chromosomes only about 0.12 million years ago, thereby creating the youngest and most gene-rich neo-sex system reported to date. This species also possesses recently derived B chromosomes that show non-Mendelian inheritance and significantly influence fertility. METHODS: We sequenced male flies with B chromosomes at 124.5-fold genome coverage using next-generation sequencing. To characterize neo-Y specific changes and B chromosome sequences, we also sequenced inbred female flies derived from the same strain but without B's at 28.5-fold. RESULTS: We assembled a female genome and placed 53% of the sequence and 85% of the annotated proteins into specific chromosomes, by comparison with the 12 Drosophila genomes. Despite its very recent origin, the non-recombining neo-Y chromosome shows various signs of degeneration, including a significant enrichment of non-functional genes compared to the neo-X, and an excess of tandem duplications relative to other chromosomes. We also characterized a B-chromosome linked scaffold that contains an actively transcribed unit and shows sequence similarity to the subcentromeric regions of both the ancient X and the neo-X chromosome. CONCLUSIONS: Our results provide novel insights into the very early stages of sex chromosome evolution and B chromosome origination, and suggest an unprecedented connection between the births of these two systems in D. albomicans.


Assuntos
Cromossomos de Insetos/genética , Drosophila/genética , Evolução Molecular , Genoma de Inseto/genética , Recombinação Genética/genética , Cromossomo X/genética , Cromossomo Y/genética , Animais , Duplicação Cromossômica/genética , Feminino , Masculino , Anotação de Sequência Molecular , Filogenia
17.
Biomarkers ; 17(7): 597-603, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22780299

RESUMO

BACKGROUND: p53 tumor suppressor gene Arg72Pro polymorphism has been associated with gastric cancer. However, results were inconsistent. We performed this meta-analysis to estimate the association between p53 Arg72Pro polymorphism and gastric cancer. METHODS: An electronic search of PubMed was conducted to select studies. Studies containing available genotype frequencies of Arg72Pro were chosen, and the association was assess by pooled odds ratio (ORs) with 95% confidence interval (CIs). RESULTS: The meta-analysis suggested that the p53 Arg72Pro was associated with the gastric cancer risk (Additive model: OR = 1.149, 95% CI = 1.045-1.263, p = 0.004; Dominant model: OR = 1.18, 95% CI = 1.049-1.328, p = 0.006; Recessive model: OR = 1.202, 95% CI = 1.013-1.427, p = 0.035) in Asian subgroup. CONCLUSION: This meta-analysis suggests that p53 Arg72Pro polymorphism is associated with increased risk of gastric cancer in Asians.


Assuntos
Substituição de Aminoácidos , Neoplasias Gástricas/genética , Proteína Supressora de Tumor p53/genética , Estudos de Casos e Controles , Frequência do Gene , Estudos de Associação Genética , Humanos , Polimorfismo Genético , Risco
18.
Zool Res ; 43(4): 585-596, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35726584

RESUMO

Heterosis is a common phenomenon in plants and animals with diverse underlying mechanisms. Here, we applied two widely used silkworm hybrid systems and performed multi-omics analysis to identify possible intrinsic associations between different hybrid strategies and epigenetic mechanisms with silkworm heterosis. We found significant differences in the silk gland transcriptomic landscape between the two systems, including differentially expressed genes and expression patterns in the hybrid offspring compared to their parents. In the quaternary hybrid system, hybrid vigor was primarily due to up-regulated genes and the parent-dominant up-regulated expression pattern, involving multiple transport processes, cellular nitrogen compound catabolism, glucose metabolism, and tricarboxylic acid cycle. In the binary system, hybrid vigor was mainly due to the down-regulated genes and transgressively down-regulated expression pattern, mainly involving basic nitrogen synthesis metabolism and body function. We also demonstrated that DNA methylation may affect hybrid vigor by regulating the expression of several heterosis-related genes. Thus, this study revealed two alternative mechanisms that may contribute to silkworm heterosis, both of which facilitate the efficient utilization of energy and nitrogen for silk production.


Assuntos
Bombyx , Vigor Híbrido , Animais , Bombyx/genética , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica de Plantas , Vigor Híbrido/genética , Nitrogênio , Seda/genética
19.
Zootaxa ; 5205(3): 231-248, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37045434

RESUMO

Wedge-shaped beetles (Ripiphoridae) not only exhibit enigmatic morphological and biological traits but also disputable phylogenetic positions. At present, however, genetic information regarding this family remains limited. In this study, we report on the complete mitogenome of one ripiphorid beetle, Metoecus javanus (Pic, 1913), from Southwest China, as well as its different developmental stages, populations, and morphological variability. The complete mitogenome of M. javanus was 16 109 bp in length, containing 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a noncoding control region. Of the 37 genes, 23 were located on the majority strand (J-strand) and 14 were located on the minority strand (N-strand). All PCGs started with "ATN" (N represents A, T, G, and C), and terminated with "TAA", except for NAD1 with "TAG" and COX2 with a single "T". The five most used codons in the PCGs were UUA(L), UCU(S2), CCU(P), UCA(S2), and GGA(G), indicating a strong bias toward A + T-rich codons. All 22 tRNAs showed typical cloverleaf structures, except trnS1, which lacked a dihydrouridine (DHU) stem. The control region contained five types of tandem repeats, with the repeat units ranging from 17 to 24 bp. Phylogenetic analysis of the concatenated set of 13 PCGs and two rRNAs (rrnL and rrnS) of M. javanus and 17 other Tenebrionoidea species indicated that M. javanus did not cluster with Pelecotoma fennica (Ripiphoridae: Pelecotominae), another wedge-shaped beetle, but was located at the base of the Mordellidae + P. fennica clade. This reconstruction supported the paraphyly of Ripiphoridae with respect to Mordellidae. Using the mitogenome COX1 data, wedge-shaped beetles from different stages (male adult, female adult, and pupa), different geographical populations (Nujiang and Lincang), and different wasp hosts (Vespidae: Vespa velutina Lepeletier, 1836 and Vespa bicolor Fabricius, 1787) were identified as a same species (i.e., M. javanus). Based on morphological observations of all specimens, we identified and described variability in the adult pronotum, male genitalia, and pupa of M. javanus. The present results provide important genetic and morphological information for further investigations on the phylogenetic position of Ripiphoridae and its evolutionary diversity.


Assuntos
Besouros , Genoma Mitocondrial , Feminino , Masculino , Animais , Filogenia , Besouros/genética , RNA de Transferência/genética , Códon
20.
Zool Res ; 43(3): 367-379, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35355458

RESUMO

Swallowtail butterflies (Papilionidae) are a historically significant butterfly group due to their colorful wing patterns, extensive morphological diversity, and phylogenetically important position as a sister group to all other butterflies and have been widely studied regarding ecological adaption, phylogeny, genetics, and evolution. Notably, they contain a unique class of pigments, i.e., papiliochromes, which contribute to their color diversity and various biological functions such as predator avoidance and mate preference. To date, however, the genomic and genetic basis of their color diversity and papiliochrome origin in a phylogenetic and evolutionary context remain largely unknown. Here, we obtained high-quality reference genomes of 11 swallowtail butterfly species covering all tribes of Papilioninae and Parnassiinae using long-read sequencing technology. Combined with previously published butterfly genomes, we obtained robust phylogenetic relationships among tribes, overcoming the challenges of incomplete lineage sorting (ILS) and gene flow. Comprehensive genomic analyses indicated that the evolution of Papilionidae-specific conserved non-exonic elements (PSCNEs) and transcription factor binding sites (TFBSs) of patterning and transporter/cofactor genes, together with the rapid evolution of transporters/cofactors, likely promoted the origin and evolution of papiliochromes. These findings not only provide novel insights into the genomic basis of color diversity, especially papiliochrome origin in swallowtail butterflies, but also provide important data resources for exploring the evolution, ecology, and conservation of butterflies.


Assuntos
Borboletas , Animais , Borboletas/genética , Filogenia , Pigmentação/genética , Asas de Animais/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA