Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Environ Sci Technol ; 58(9): 4214-4225, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373236

RESUMO

Anthropogenic organohalide pollutants pose a severe threat to public health and ecosystems. In situ bioremediation using organohalide respiring bacteria (OHRB) offers an environmentally friendly and cost-efficient strategy for decontaminating organohalide-polluted sites. The genomic structures of many OHRB suggest that dehalogenation traits can be horizontally transferred among microbial populations, but their occurrence among anaerobic OHRB has not yet been demonstrated experimentally. This study isolates and characterizes a novel tetrachloroethene (PCE)-dechlorinating Sulfurospirillum sp. strain SP, distinguishing itself among anaerobic OHRB by showcasing a mechanism essential for horizontal dissemination of reductive dehalogenation capabilities within microbial populations. Its genetic characterization identifies a unique plasmid (pSULSP), harboring reductive dehalogenase and de novo corrinoid biosynthesis operons, functions critical to organohalide respiration, flanked by mobile elements. The active mobility of these elements was demonstrated through genetic analyses of spontaneously emerging nondehalogenating variants of strain SP. More importantly, bioaugmentation of nondehalogenating microcosms with pSULSP DNA triggered anaerobic PCE dechlorination in taxonomically diverse bacterial populations. Our results directly support the hypothesis that exposure to anthropogenic organohalide pollutants can drive the emergence of dehalogenating microbial populations via horizontal gene transfer and demonstrate a mechanism by which genetic bioaugmentation for remediation of organohalide pollutants could be achieved in anaerobic environments.


Assuntos
Chloroflexi , Poluentes Ambientais , Ecossistema , Bactérias/genética , Respiração , Família Multigênica , Biodegradação Ambiental
2.
Environ Sci Technol ; 57(40): 15112-15122, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37772791

RESUMO

Cocontamination by multiple chlorinated solvents is a prevalent issue in groundwater, presenting a formidable challenge for effective remediation. Despite the recognition of this issue, a comprehensive assessment of microbial detoxification processes involving chloroethenes and associated cocontaminants, along with the underpinning microbiome, remains absent. Moreover, strategies to mitigate the inhibitory effects of cocontaminants have not been reported. Here, we revealed that chloroform exhibited the most potent inhibitory effects, followed by 1,1,1-trichloroethane and 1,1,2-trichloroethane, on dechlorination of dichloroethenes (DCEs) in Dehalococcoides-containing consortia. The observed inhibition could be attributed to suppression of biosynthesis and enzymatic activity of reductive dehalogenases and growth of Dehalococcoides. Notably, cocontaminants more profoundly inhibited Dehalococcoides populations harboring the vcrA gene than those possessing the tceA gene, thereby explaining the accumulation of vinyl chloride under cocontaminant stress. Nonetheless, we successfully ameliorated cocontaminant inhibition by augmentation with Desulfitobacterium sp. strain PR owing to its ability to attenuate cocontaminants, resulting in concurrent detoxification of DCEs, trichloroethanes, and chloroform. Microbial community analyses demonstrated obvious alterations in taxonomic composition, structure, and assembly of the dechlorinating microbiome in the presence of cocontaminants, and introduction of strain PR reshaped the dechlorinating microbiome to be similar to its original state in the absence of cocontaminants. Altogether, these findings contribute to developing bioremediation technologies to clean up challenging sites polluted with multiple chlorinated solvents.


Assuntos
Chloroflexi , Cloreto de Vinil , Dehalococcoides , Chloroflexi/genética , Clorofórmio/farmacologia , Biodegradação Ambiental , Cloreto de Vinil/farmacologia , Solventes/farmacologia
3.
J Soc Pers Relat ; 40(5): 1579-1600, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38603400

RESUMO

Main effect models contend that perceived social support benefits mental health in the presence and the absence of stressful events, whereas stress-buffering models contend that perceived social support benefits mental health especially when individuals are facing stressful events. We tested these models of how perceived social support impacts mental health during the COVID-19 pandemic and evaluated whether characteristics of everyday social interactions statistically mediated this association - namely, (a) received support, the visible and deliberate assistance provided by others, and (b) pleasantness, the extent to which an interaction is positive, flows easily, and leads individuals to feel understood and validated. 591 United States adults completed a 3-week ecological momentary assessment protocol sampling characteristics of their everyday social interactions that was used to evaluate between-person average values and within-person daily fluctuations in everyday social interaction characteristics. Global measures of perceived social support and pandemic-related stressors were assessed at baseline. Psychiatric symptoms of depression and anxiety were assessed at baseline, at the end of each day of ecological momentary assessment, and at 3-week follow-up. Consistent with a main effect model, higher baseline perceived social support predicted decreases in psychiatric symptoms at 3-week follow-up (ß = -.09, p = .001). Contrary to a stress-buffering model, we did not find an interaction of pandemic-stressors × perceived social support. The main effect of perceived social support on mental health was mediated by the pleasantness of everyday social interactions, but not by received support in everyday social interactions. We found evidence for both main effects and stress-buffering effects of within-person fluctuations in interaction pleasantness on daily changes in mental health. Results suggest the importance of everyday social interaction characteristics, especially their pleasantness, in linking perceived social support and mental health.

4.
Appl Environ Microbiol ; 88(4): e0218121, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34910572

RESUMO

As a group, the genus Dehalococcoides dehalogenates a wide range of organohalide pollutants, but the range of organohalide compounds that can be utilized for reductive dehalogenation differs among Dehalococcoides strains. Dehalococcoides lineages cannot be reliably disambiguated in mixed communities using typical phylogenetic markers, which often confounds bioremediation efforts. Here, we describe a computational approach to identify Dehalococcoides genetic markers with improved discriminatory resolution. Screening core genes from the Dehalococcoides pangenome for degree of similarity and frequency of 100% identity found a candidate genetic marker encoding a bacterial neuraminidase repeat (BNR)-containing protein of unknown function. This gene exhibits the fewest completely identical amino acid sequences and has among the lowest average amino acid sequence identity in the core pangenome. Primers targeting BNR could effectively discriminate between 40 available BNR sequences (in silico) and 10 different Dehalococcoides isolates (in vitro). Amplicon sequencing of BNR fragments generated from 22 subsurface soil samples revealed a total of 109 amplicon sequence variants, suggesting a high diversity of Dehalococcoides distributed in the environment. Therefore, the BNR gene can serve as an alternative genetic marker to differentiate strains of Dehalococcoides in complicated microbial communities. IMPORTANCE The challenge of discriminating between phylogenetically similar but functionally distinct bacterial lineages is particularly relevant to the development of technologies seeking to exploit the metabolic or physiological characteristics of specific members of bacterial genera. A computational approach was developed to expedite screening of potential genetic markers among phylogenetically affiliated bacteria. Using this approach, a gene encoding a bacterial neuraminidase repeat (BNR)-containing protein of unknown function was selected and evaluated as a genetic marker to differentiate strains of Dehalococcoides, an environmentally relevant genus of bacteria whose members can transform and detoxify a range of halogenated organic solvents and persistent organic pollutants, in complex microbial communities to demonstrate the validity of the approach. Moreover, many apparently phylogenetically distinct, currently uncharacterized Dehalococcoides were detected in environmental samples derived from contaminated sites.


Assuntos
Chloroflexi , Biodegradação Ambiental , Chloroflexi/metabolismo , Dehalococcoides , Marcadores Genéticos , Filogenia
5.
Environ Sci Technol ; 56(12): 8008-8019, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35549250

RESUMO

Polybrominated diphenyl ethers (PBDEs) are prevalent environmental pollutants, but bioremediation of PBDEs remains to be reported. Here we report accelerated remediation of a penta-BDE mixture in sediments by bioaugmentation with Dehalococcoides mccartyi strains CG1 and TZ50. Bioaugmentation with different amounts of each Dehalococcoides strain enhanced debromination of penta-BDEs compared with the controls. The sediment microcosm spiked with 6.8 × 106 cells/mL strain CG1 showed the highest penta-BDEs removal (89.9 ± 7.3%) to diphenyl ether within 60 days. Interestingly, co-contaminant tetrachloroethene (PCE) improved bioaugmentation performance, resulting in faster and more extensive penta-BDEs debromination using less bioinoculants, which was also completely dechlorinated to ethene by introducing D. mccartyi strain 11a. The better bioaugmentation performance in sediments with PCE could be attributed to the boosted growth of the augmented Dehalococcoides and capability of the PCE-induced reductive dehalogenases to debrominate penta-BDEs. Finally, ecological analyses showed that bioaugmentation resulted in more deterministic microbial communities, where the augmented Dehalococcoides established linkages with indigenous microorganisms but without causing obvious alterations of the overall community diversity and structure. Collectively, this study demonstrates that bioaugmentation with Dehalococcoides is a feasible strategy to completely remove PBDEs in sediments.


Assuntos
Poluentes Ambientais , Tetracloroetileno , Poluentes Químicos da Água , Biodegradação Ambiental , Dehalococcoides , Sedimentos Geológicos/química , Éteres Difenil Halogenados
6.
Environ Sci Technol ; 56(7): 4039-4049, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35298122

RESUMO

Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are notorious persistent organic pollutants. However, few organohalide-respiring bacteria that harbor reductive dehalogenases (RDases) capable of dehalogenating these pollutants have been identified. Here, we report reductive dehalogenation of penta-BDEs and PCBs byDehalococcoides mccartyi strain MB. The PCE-pregrown cultures of strain MB debrominated 86.6 ± 7.4% penta-BDEs to di- to tetra-BDEs within 5 days. Similarly, extensive dechlorination of Aroclor1260 and Aroclor1254 was observed in the PCE-pregrown cultures of strain MB, with the average chlorine per PCB decreasing from 6.40 ± 0.02 and 5.40 ± 0.03 to 5.98 ± 0.11 and 5.19 ± 0.07 within 14 days, respectively; para-substituents were preferentially dechlorinated from PCBs. Moreover, strain MB showed distinct enantioselective dechlorination of different chiral PCB congeners. Dehalogenation activity and cell growth were maintained during the successive transfer of cultures when amended with penta-BDEs as the sole electron acceptors but not when amended with only PCBs, suggesting metabolic and co-metabolic dehalogenation of these compounds, respectively. Transcriptional analysis, proteomic profiling, and in vitro activity assays indicated that MbrA was involved in dehalogenating PCE, PCBs, and PBDEs. Interestingly, resequencing of mbrA in strain MB identified three nonsynonymous mutations within the nucleotide sequence, although the consequences of which remain unknown. The substrate versatility of MbrA enabled strain MB to dechlorinate PCBs in the presence of either penta-BDEs or PCE, suggesting that co-metabolic dehalogenation initiated by multifunctional RDases may contribute to PCB attenuation at sites contaminated with multiple organohalide pollutants.


Assuntos
Chloroflexi , Bifenil Polibromatos , Bifenilos Policlorados , Biodegradação Ambiental , Catálise , Chloroflexi/genética , Chloroflexi/metabolismo , Dehalococcoides , Éteres Difenil Halogenados/metabolismo , Bifenil Polibromatos/metabolismo , Bifenilos Policlorados/metabolismo , Proteômica
7.
Appl Environ Microbiol ; 87(17): e0060221, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34160266

RESUMO

Polybrominated diphenyl ethers (PBDEs) are persistent, highly toxic, and widely distributed environmental pollutants. The microbial populations and functional reductive dehalogenases (RDases) responsible for PBDE debromination in anoxic systems remain poorly understood, which confounds bioremediation of PBDE-contaminated sites. Here, we report a PBDE-debrominating enrichment culture dominated by a previously undescribed Dehalococcoides mccartyi population. A D. mccartyi strain, designated TZ50, whose genome contains 25 putative RDase-encoding genes, was isolated from the debrominating enrichment culture. Strain TZ50 dehalogenated a mixture of pentabrominated diphenyl ether (penta-BDE) and tetra-BDE congeners (total BDEs, 1.48 µM) to diphenyl ether within 2 weeks (0.58 µM Br-/day) via ortho- and meta-bromine elimination; strain TZ50 also dechlorinated tetrachloroethene (PCE) to vinyl chloride and ethene (260.2 µM Cl-/day). Results of native PAGE, proteomic profiling, and in vitro enzymatic activity assays implicated the involvement of three RDases in PBDE and PCE dehalogenation. TZ50_0172 (PteATZ50) and TZ50_1083 (TceATZ50) were responsible for the debromination of penta- and tetra-BDEs to di-BDE. TZ50_0172 and TZ50_1083 were also implicated in the dechlorination of PCE to trichloroethene (TCE) and of TCE to vinyl chloride/ethene, respectively. The other expressed RDase, TZ50_0090 (designated BdeA), was associated with the debromination of di-BDE to diphenyl ether, but its role in PCE dechlorination was unclear. Comparatively few RDases are known to be involved in PBDE debromination, and the identification of PteATZ50, TceATZ50, and BdeA provides additional information for evaluating debromination potential at contaminated sites. Moreover, the ability of PteATZ50 and TceATZ50 to dehalogenate both PBDEs and PCE makes strain TZ50 a suitable candidate for the remediation of cocontaminated sites. IMPORTANCE The ubiquity, toxicity, and persistence of polybrominated diphenyl ethers (PBDEs) in the environment have drawn significant public and scientific interest to the need for the remediation of PBDE-contaminated ecosystems. However, the low bioavailability of PBDEs in environmental compartments typically limits bioremediation of PBDEs and has long impeded the study of anaerobic microbial PBDE removal. In the current study, a novel Dehalococcoides mccartyi strain, dubbed strain TZ50, that expresses RDases that mediate organohalide respiration of both PBDEs and chloroethenes was isolated and characterized. Strain TZ50 could potentially be used to remediate multiple cooccurring organohalides in contaminated systems.


Assuntos
Proteínas de Bactérias/metabolismo , Dehalococcoides/enzimologia , Poluentes Ambientais/metabolismo , Éteres Difenil Halogenados/metabolismo , Proteínas de Bactérias/genética , Biodegradação Ambiental , Dehalococcoides/genética , Dehalococcoides/metabolismo , Poluentes Ambientais/química , Genoma Bacteriano , Éteres Difenil Halogenados/química , Halogenação , Tricloroetileno/química , Tricloroetileno/metabolismo
8.
Environ Sci Technol ; 55(8): 4205-4226, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33705105

RESUMO

Halogenated flame retardants (HFRs) have been extensively used in various consumer products and many are classified as persistent organic pollutants due to their resistance to degradation, bioaccumulation potential and toxicity. HFRs have been widely detected in the municipal wastewater and wastewater treatment solids in wastewater treatment plants (WWTPs), the discharge and agricultural application of which represent a primary source of environmental HFRs contamination. This review seeks to provide a current overview on the occurrence, fate, and impacts of HFRs in WWTPs around the globe. We first summarize studies recording the occurrence of representative HFRs in wastewater and wastewater treatment solids, revealing temporal and geographical trends in HFRs distribution. Then, the efficiency and mechanism of HFRs removal by biosorption, which is known to be the primary process for HFRs removal from wastewater, during biological wastewater treatment processes, are discussed. Transformation of HFRs via abiotic and biotic processes in laboratory tests and full-scale WWTPs is reviewed with particular emphasis on the transformation pathways and functional microorganisms responsible for HFRs biotransformation. Finally, the potential impacts of HFRs on reactor performance (i.e., nitrogen removal and methanogenesis) and microbiome in bioreactors are discussed. This review aims to advance our understanding of the fate and impacts of HFRs in WWTPs and shed light on important questions warranting further investigation.


Assuntos
Retardadores de Chama , Poluentes Químicos da Água , Purificação da Água , Reatores Biológicos , Monitoramento Ambiental , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Águas Residuárias , Poluentes Químicos da Água/análise
9.
Environ Microbiol ; 20(5): 1723-1738, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29528547

RESUMO

The distribution and importance of anaerobic ammonium oxidation (anammox) and nitrite-dependent anaerobic methane oxidation (n-damo) have been identified in aquatic ecosystems; their role in agricultural upland soils however has not yet been well investigated. In this study, we examined spatio-temporal distributions of anammox and n-damo bacteria in soil profiles (300 cm depth) from an agricultural upland. Monitoring nitrogen (N) conversion activity using isotope-tracing techniques over the course of one year showed denitrification (99.0% N-loss in the winter and 85.0% N-loss in the summer) predominated over anammox (1.0% N-loss in the winter and 14.4% N-loss in the summer) and n-damo (0.6% N-loss in the winter) in surface soils (0-20 cm). While below 20 cm depth, N-loss was dominated by anammox (79.4 ± 14.3% in the winter and 65.4 ± 12.5% in the summer) and n-damo was not detected. Phylogenetic analysis showed that Candidatus Brocadia anammoxidans dominated the anammox community in the surface soil and Candidatus Brocadia fulgida dominated below 20 cm depth. Dissimilatory nitrate reduction to ammonium (DNRA), another nitrite reduction process, was found to play a limited role (4.9 ± 3.5%) in the surface soil compared with denitrification; below 80 cm DNRA rates were much higher than rates of anammox and denitrification. Ammonium oxidation was the main source of NO2- above 80 cm (70.9 ± 23.3%), the key influencing factor on anammox rates, and nitrate reduction (100%) was the main NO2- source below 80 cm. Considering the anammox, n-damo and denitrification rates as a whole in the sampled soil profile, denitrification is still the main N-loss process in upland soils.


Assuntos
Bactérias/metabolismo , Nitrogênio/metabolismo , Microbiologia do Solo , Solo/química , Compostos de Amônio/metabolismo , Anaerobiose , Bactérias/classificação , Desnitrificação , Metano/metabolismo , Nitratos , Nitritos/metabolismo , Nitrogênio/química , Oxirredução , Filogenia
10.
Environ Sci Technol ; 52(11): 6226-6236, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29750509

RESUMO

Artificial microbial nitrogen (N) cycle hotspots in the plant-bed/ditch system were developed and investigated based on intact core and slurry assays measurement using isotopic tracing technology, quantitative PCR and high-throughput sequencing. By increasing hydraulic retention time and periodically fluctuating water level in heterogeneous riparian zones, hotspots of anammox, nitrification, denitrification, ammonium (NH4+) oxidation, nitrite (NO2-) oxidation, nitrate (NO3-) reduction and DNRA were all stimulated at the interface sediments, with the abundance and activity being about 1-3 orders of magnitude higher than those in nonhotspots. Isotopic pairing experiments revealed that in microbial hotspots, nitrite sources were higher than the sinks, and both NH4+ oxidation (55.8%) and NO3- reduction (44.2%) provided nitrite for anammox, which accounted for 43.0% of N-loss and 44.4% of NH4+ removal in riparian zones but did not involve nitrous oxide (N2O) emission risks. High-throughput analysis identified that bacterial quorum sensing mediated this anammox hotspot with B.fulgida dominating the anammox community, but it was B. anammoxidans and Jettenia sp. that contributed more to anammox activity. In the nonhotspot zones, the NO2- source (NO3- reduction dominated) was lower than the sink, limiting the effects on anammox. The in situ N2O flux measurement showed that the microbial hotspot had a 27.1% reduced N2O emission flux compared with the nonhotspot zones.


Assuntos
Compostos de Amônio , Áreas Alagadas , Desnitrificação , Nitratos , Nitrogênio , Óxido Nitroso , Oxirredução
11.
Appl Microbiol Biotechnol ; 101(13): 5481-5492, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28424844

RESUMO

Trihalomethanes such as chloroform and bromoform, although well-known as a prominent class of disinfection by-products, are ubiquitously distributed in the environment due to widespread industrial usage in the past decades. Chloroform and bromoform are particularly concerning, of high concentrations detected and with long half-lives up to several hundred days in soils and groundwater. In this study, we report a Dehalobacter- and Desulfovibrio-containing co-culture that exhibits dehalogenation of chloroform (~0.61 mM) to dichloromethane and bromoform (~0.67 mM) to dibromomethane within 10-15 days. This co-culture was further found to dechlorinate 1,1,1-trichloroethane (1,1,1-TCA) (~0.65 mM) to 1,1-dichloroethane within 12 days. The Dehalobacter species present in this co-culture, designated Dehalobacter sp. THM1, was found to couple growth with dehalogenation of chloroform, bromoform, and 1,1,1-TCA. Strain THM1 harbors a newly identified reductive dehalogenase (RDase), ThmA, which catalyzes chloroform, bromoform, and 1,1,1-TCA dehalogenation. Additionally, based on the sequences of thmA and other identified chloroform RDase genes, ctrA, cfrA, and tmrA, a pair of chloroform RDase gene-specific primers were designed and successfully applied to investigate the chloroform dechlorinating potential of microbial communities. The comparative analysis of chloroform RDases with tetrachloroethene RDases suggests a possible approach in predicting the substrate specificity of uncharacterized RDases in the future.


Assuntos
Desulfovibrionaceae/metabolismo , Halogenação , Peptococcaceae/metabolismo , Trialometanos/química , Catálise , Técnicas de Cocultura , Cloreto de Etil/análogos & derivados , Cloreto de Etil/metabolismo , Oxirredutases/metabolismo , Especificidade por Substrato , Trialometanos/metabolismo
12.
Proc Natl Acad Sci U S A ; 111(33): 12103-8, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25028492

RESUMO

Fastidious anaerobic bacteria play critical roles in environmental bioremediation of halogenated compounds. However, their characterization and application have been largely impeded by difficulties in growing them in pure culture. Thus far, no pure culture has been reported to respire on the notorious polychlorinated biphenyls (PCBs), and functional genes responsible for PCB detoxification remain unknown due to the extremely slow growth of PCB-respiring bacteria. Here we report the successful isolation and characterization of three Dehalococcoides mccartyi strains that respire on commercial PCBs. Using high-throughput metagenomic analysis, combined with traditional culture techniques, tetrachloroethene (PCE) was identified as a feasible alternative to PCBs to isolate PCB-respiring Dehalococcoides from PCB-enriched cultures. With PCE as an alternative electron acceptor, the PCB-respiring Dehalococcoides were boosted to a higher cell density (1.2 × 10(8) to 1.3 × 10(8) cells per mL on PCE vs. 5.9 × 10(6) to 10.4 × 10(6) cells per mL on PCBs) with a shorter culturing time (30 d on PCE vs. 150 d on PCBs). The transcriptomic profiles illustrated that the distinct PCB dechlorination profile of each strain was predominantly mediated by a single, novel reductive dehalogenase (RDase) catalyzing chlorine removal from both PCBs and PCE. The transcription levels of PCB-RDase genes are 5-60 times higher than the genome-wide average. The cultivation of PCB-respiring Dehalococcoides in pure culture and the identification of PCB-RDase genes deepen our understanding of organohalide respiration of PCBs and shed light on in situ PCB bioremediation.


Assuntos
Chloroflexi/genética , Genoma Bacteriano , Bifenilos Policlorados/metabolismo , Chloroflexi/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase
13.
Environ Microbiol ; 16(11): 3387-97, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24428759

RESUMO

1,1,1-Trichloroethane (TCA) and chloroform are two notorious groundwater pollutants. Here we report the isolation and characterization of Desulfitobacterium sp. strain PR that rapidly dechlorinates both compounds. In pyruvate-amended medium, strain PR reductively dechlorinates ∼ 1.0 mM TCA completely to monochloroethane within 15 days. Under the same conditions, strain PR dechlorinates ∼ 1.2 mM chloroform to predominantly dichloromethane (∼ 1.14 mM) and trace amount of monochloromethane (∼ 0.06 mM) within 10 days. Strain PR shares 96.7% 16S rRNA gene sequence similarity with its closest relative - Desulfitobacterium metallireducens strain 853-15; however, it distinguishes itself from known Desulfitobacterium strains by its inability of utilizing several of their commonly shared substrates such as lactate, thiosulfate and sulfite. A reductive dehalogenase gene (ctrA) in strain PR was identified to be responsible for dechlorination of both TCA and chloroform, showing a maximum expression level of 5.95 ∼ 6.25 copies of transcripts cell(-1) . CtrA shares 94% amino acid sequence identity with CfrA in Dehalobacter sp. strain CF50 and DcrA in Dehalobacter sp. strain DCA. Interestingly, strain PR could tolerate high aqueous concentrations (up to 0.45 mM) of trichloroethene, another groundwater pollutant that often coexists with TCA/chloroform. As the first chloroform-respiring and the second TCA-respiring isolate that has been identified, Desulfitobacterium sp. strain PR may prove useful in remediation of halogenated alkanes with trihalomethyl (-CX3) groups.


Assuntos
Clorofórmio/metabolismo , Desulfitobacterium/metabolismo , Tricloroetanos/metabolismo , Poluentes Químicos da Água/metabolismo , Desulfitobacterium/genética , Desulfitobacterium/crescimento & desenvolvimento , Desulfitobacterium/isolamento & purificação , Oxirredutases/genética
14.
Int J Mol Sci ; 15(5): 7281-92, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24786090

RESUMO

Ricin is one of the most poisonous natural toxins from plants and is classified as a Class B biological threat pathogen by the Centers for Disease Control and Prevention (CDC) of U.S.A. Ricin exposure can occur through oral or aerosol routes. Ricin poisoning has a rapid onset and a short incubation period. There is no effective treatment for ricin poisoning. In this study, an aerosolized ricin-exposed mouse model was developed and the pathology was investigated. The protein expression profile in the ricin-poisoned mouse lung tissue was analyzed using proteomic techniques to determine the proteins that were closely related to the toxicity of ricin. 2D gel electrophoresis, mass spectrometry and subsequent biological functional analysis revealed that six proteins including Apoa1 apolipoprotein, Ywhaz 14-3-3 protein, Prdx6 Uncharacterized Protein, Selenium-binding protein 1, HMGB1, and DPYL-2, were highly related to ricin poisoning.


Assuntos
Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Pulmão/patologia , Proteínas/análise , Ricina/intoxicação , Aerossóis/intoxicação , Animais , Eletroforese em Gel Bidimensional , Feminino , Pulmão/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Microbiome ; 12(1): 54, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491554

RESUMO

BACKGROUND: Massive amounts of sewage sludge are generated during biological sewage treatment and are commonly subjected to anaerobic digestion, land application, and landfill disposal. Concurrently, persistent organic pollutants (POPs) are frequently found in sludge treatment and disposal systems, posing significant risks to both human health and wildlife. Metabolically versatile microorganisms originating from sewage sludge are inevitably introduced to sludge treatment and disposal systems, potentially affecting the fate of POPs. However, there is currently a dearth of comprehensive assessments regarding the capability of sewage sludge microbiota from geographically disparate regions to attenuate POPs and the underpinning microbiomes. RESULTS: Here we report the global prevalence of organohalide-respiring bacteria (OHRB) known for their capacity to attenuate POPs in sewage sludge, with an occurrence frequency of ~50% in the investigated samples (605 of 1186). Subsequent laboratory tests revealed microbial reductive dechlorination of polychlorinated biphenyls (PCBs), one of the most notorious categories of POPs, in 80 out of 84 sludge microcosms via various pathways. Most chlorines were removed from the para- and meta-positions of PCBs; nevertheless, ortho-dechlorination of PCBs also occurred widely, although to lower extents. Abundances of several well-characterized OHRB genera (Dehalococcoides, Dehalogenimonas, and Dehalobacter) and uncultivated Dehalococcoidia lineages increased during incubation and were positively correlated with PCB dechlorination, suggesting their involvement in dechlorinating PCBs. The previously identified PCB reductive dehalogenase (RDase) genes pcbA4 and pcbA5 tended to coexist in most sludge microcosms, but the low ratios of these RDase genes to OHRB abundance also indicated the existence of currently undescribed RDases in sewage sludge. Microbial community analyses revealed a positive correlation between biodiversity and PCB dechlorination activity although there was an apparent threshold of community co-occurrence network complexity beyond which dechlorination activity decreased. CONCLUSIONS: Our findings that sludge microbiota exhibited nearly ubiquitous dechlorination of PCBs indicate widespread and nonnegligible impacts of sludge microbiota on the fate of POPs in sludge treatment and disposal systems. The existence of diverse OHRB also suggests sewage sludge as an alternative source to obtain POP-attenuating consortia and calls for further exploration of OHRB populations in sewage sludge. Video Abstract.


Assuntos
Chloroflexi , Poluentes Ambientais , Bifenilos Policlorados , Humanos , Bifenilos Policlorados/análise , Esgotos , Chloroflexi/genética , Prevalência , Biodegradação Ambiental , Bactérias/genética , Bactérias/metabolismo , Poluentes Ambientais/análise , Sedimentos Geológicos/microbiologia
16.
mLife ; 2(4): 378-388, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38818270

RESUMO

Microplastics and nanoplastics are emerging pollutants that substantially influence biological element cycling in natural ecosystems. Plastics are also prevalent in sewage, and they accumulate in waste-activated sludge (WAS). However, the impacts of plastics on the methanogenic digestion of WAS and the underpinning microbiome remain underexplored, particularly during long-term operation. In this study, we found that short-term exposure to individual microplastics and nanoplastics (polyethylene, polyvinyl chloride, polystyrene, and polylactic acid) at a low concentration (10 particles/g sludge) slightly enhanced methanogenesis by 2.1%-9.0%, whereas higher levels (30-200 particles/g sludge) suppressed methanogenesis by 15.2%-30.1%. Notably, the coexistence of multiple plastics, particularly at low concentrations, showed synergistic suppression of methanogenesis. Unexpectedly, methanogenesis activity completely recovered after long-term exposure to plastics, despite obvious suppression of methanogenesis by initial plastic exposure. The inhibition of methanogenesis by plastics could be attributed to the stimulated generation of reactive oxygen species. The stress induced by plastics dramatically decreased the relative abundance of methanogens but showed marginal influence on putative hydrolytic and fermentation populations. Nonetheless, the digestion sludge microbiome exhibited resilience and functional redundancy, contributing to the recovery of methanogenesis during the long-term operation of digesters. Plastics also increased the complexity, modularity, and negative interaction ratios of digestion sludge microbiome networks, but their influence on community assembly varied. Interestingly, a unique plastisphere was observed, the networks and assembly of which were distinct from the sludge microbiome. Collectively, the comprehensive evaluation of the influence of microplastics and nanoplastics on methanogenic digestion, together with the novel ecological insights, contribute to better understanding and manipulating this engineered ecosystem in the face of increasing plastic pollution.

17.
ISME J ; 17(5): 660-670, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36765150

RESUMO

Organohalide pollutants are prevalent in coastal regions due to extensive intervention by anthropogenic activities, threatening public health and ecosystems. Gradients in salinity are a natural feature of coasts, but their impacts on the environmental fate of organohalides and the underlying microbial communities remain poorly understood. Here we report the effects of salinity on microbial reductive dechlorination of tetrachloroethene (PCE) and polychlorinated biphenyls (PCBs) in consortia derived from distinct environments (freshwater and marine sediments). Marine-derived microcosms exhibited higher halotolerance during PCE and PCB dechlorination, and a halotolerant dechlorinating culture was enriched from these microcosms. The organohalide-respiring bacteria (OHRB) responsible for PCE and PCB dechlorination in marine microcosms shifted from Dehalococcoides to Dehalobium when salinity increased. Broadly, lower microbial diversity, simpler co-occurrence networks, and more deterministic microbial community assemblages were observed under higher salinity. Separately, we observed that inhibition of dechlorination by high salinity could be attributed to suppressed viability of Dehalococcoides rather than reduced provision of substrates by syntrophic microorganisms. Additionally, the high activity of PCE dechlorinating reductive dehalogenases (RDases) in in vitro tests under high salinity suggests that high salinity likely disrupted cellular components other than RDases in Dehalococcoides. Genomic analyses indicated that the capability of Dehalobium to perform dehalogenation under high salinity was likely owing to the presence of genes associated with halotolerance in its genomes. Collectively, these mechanistic and ecological insights contribute to understanding the fate and bioremediation of organohalide pollutants in environments with changing salinity.


Assuntos
Chloroflexi , Poluentes Ambientais , Microbiota , Bifenilos Policlorados , Chloroflexi/genética , Salinidade , Bifenilos Policlorados/análise , Bifenilos Policlorados/química , Biodegradação Ambiental , Desempenho Físico Funcional
18.
J Hazard Mater ; 448: 130895, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758435

RESUMO

Micro- and nano-plastics are prevalent in diverse ecosystems, but their impacts on biotransformation of organohalide pollutants and underpinning microbial communities remain poorly understood. Here we investigated the influence of micro- and nano-plastics on microbial reductive dehalogenation at strain and community levels. Generally, microplastics including polyethylene (PE), polystyrene (PS), polylactic acid (PLA), and a weathered microplastic mixture increased dehalogenation rate by 10 - 217% in both the Dehalococcoides isolate and enrichment culture, whereas the effects of polyvinyl chloride (PVC) and a defined microplastic mixture depended on their concentrations and cultures. Contrarily, nano-PS (80 nm) consistently inhibited dehalogenation due to increased production of reactive oxygen species. Nevertheless, the enrichment culture showed higher tolerance to nano-PS inhibition, implying crucial roles of non-dehalogenating populations in ameliorating nanoplastic inhibition. The variation in dehalogenation activity was linked to altered organohalide-respiring bacteria (OHRB) growth and reductive dehalogenase (RDase) gene transcription. Moreover, microplastics changed the community structure and benefited the enrichment of OHRB, favoring the proliferation of Dehalogenimonas. More broadly, the assembly of microbial communities on plastic biofilms was more deterministic than that in the planktonic cells, with more complex co-occurrence networks in the former. Collectively, these findings contribute to better understanding the fate of organohalides in changing environments with increasing plastic pollution.


Assuntos
Poluentes Ambientais , Microplásticos/toxicidade , Plásticos , Ecossistema , Biodegradação Ambiental
19.
Int J Mol Sci ; 13(10): 13704-12, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23202975

RESUMO

Ricin toxin has been regarded as one of the most potent poisons in the plant kingdom, and there is no effective therapeutic countermeasure or licensed vaccine against it. Consequently, early detection of ricin intoxication is necessary. In this study, we took mice as test subjects, and used the technique of Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS) and ClinProt™ microparticle beads to set up an effective detection model with an accuracy of almost 100%. Eighty-two peaks in the mass range 1000-10,000 m/z were detected by ClinProTools software, and five different peaks with m/z of 4982.49, 1333.25, 1537.86, 4285.05 and 2738.88 had the greatest contribution to the accuracy and sensitivity of this model. They may therefore provide biomarkers for ricin intoxication.


Assuntos
Peptídeos/sangue , Ricina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Biomarcadores/sangue , Feminino , Injeções Intraperitoneais , Magnetismo , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Tempo
20.
Sci Total Environ ; 813: 152458, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34953840

RESUMO

As a potent atmospheric greenhouse gas and a major source of ozone depletion, nitrous oxide (N2O) emission has been given increasing attention in aquatic systems, particularly at the aquatic-terrestrial interfaces, such as riparian zones. However, the microbial mechanisms regulating N2O emission in riparian zones remain unknown. Here, we measured the contributions of denitrification and ammonium oxidation to N2O emission along with the abundance and community structure of nirK-, nirS-, nosZ I- and nosZ II-harbouring bacteria in both surface sediments (0-10 cm) and overlying water along a lake riparian zone (including nearshore sites and offshore sites). Overall, the nearshore sites of the riparian zones emitted less N2O than the offshore sites. Nearshore N2O emission was dominated by denitrification with a high N2O reduction rate, whereas offshore N2O emission was driven by ammonium oxidation. Furthermore, N2O derived from ammonium oxidation was influenced by the NH4+-N content, and denitrification N2O was modulated by denitrifier communities. The N2O-producing community was dominated by nirS-harbouring bacteria, while the N2O-reducing community was dominated by nosZ I-harbouring bacteria. The relative abundance of Hydrogenophilales from nirS-denitrifiers and Chloroflexi unclassified from nosZ II-type communities influenced the N2O produced by denitrification, according to high-throughput sequencing analysis. Additionally, we also found lower levels of N2O production per unit volume in overlying water, which were 3-4 orders of magnitude less than in the surface sediment. Overall, we propose that using riparian zones can be an effective management tool for N2O mitigation by enhancing the N2O reduction process of denitrification and decreasing ammonium oxidation.


Assuntos
Desnitrificação , Microbiologia do Solo , Bactérias , Óxido Nitroso/análise , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA