Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Brain Behav Immun ; 109: 308-320, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36754246

RESUMO

Pain is one of the most severe complications affecting the quality of life of cancer patients. Although substantial progress has been made in the diagnosis and treatment of cancer, the neurobiological mechanism of cancer pain is still unclear. In the present study, we identified the critical role of CXC chemokine 2 (CXCL2), released by Schwann cells after being activated by cancer cells, in maintaining cancer-induced macrophage infiltration and the resulting mechanical hypersensitivity and persistent spontaneous nociception. In vitro, Schwann cells cocultured with breast cancer cells exhibited a significant increase in CXCL2 expression; in addition, conditioned medium from Schwann cells activated by breast cancer cells had a similar effect to recombinant CXCL2 in terms of inducing macrophage migration. Targeting CXCL2 signaling by both CXC chemokine receptor 2 (CXCR2) antagonist pharmacological blockade and anti-CXCL2 mAb immunological blockade robustly prevented conditioned medium-induced macrophage migration. In vivo, both application of recombinant CXCL2 and perineural breast cancer cell implantation resulted in mechanical hypersensitivity and persistent spontaneous nociception in mice, along with increased macrophage infiltration into the sciatic nerves. Similar to the in vitro results, inhibition of CXCL2/CXCR2 signaling or conditional knockdown of CXCL2 in sciatic nerve Schwann cells effectively attenuated breast cancer cell-induced mechanical hypersensitivity, persistent spontaneous nociception, and macrophage recruitment in the sciatic nerve. Mechanistically, we found that redox effector factor-1 (Ref-1) secreted by breast cancer cells activated hypoxia inducible factor-1α (HIF-1α) expression and inhibited reactive oxygen species (ROS) production in Schwann cells, ultimately inducing CXCL2 expression in Schwann cells. In brief, the present study expands new insights into cancer pain mechanisms from promising animal models to provide new strategies for the control of cancer pain.


Assuntos
Dor do Câncer , Neoplasias , Camundongos , Animais , Quimiocinas CXC/metabolismo , Dor do Câncer/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Qualidade de Vida , Macrófagos/metabolismo , Fatores Imunológicos , Células de Schwann/metabolismo , Neoplasias/metabolismo
2.
J Neuroinflammation ; 19(1): 32, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109876

RESUMO

BACKGROUND: Peripheral nerve injury (PNI) is a public health concern that results in sensory and motor disorders as well as neuropathic pain and secondary lesions. Currently, effective treatments for PNI are still limited. For example, while nerve growth factor (NGF) is widely used in the treatment of PNI to promote nerve regeneration, it also induces pain. Maresin 1 (MaR1) is an anti-inflammatory and proresolving mediator that has the potential to regenerate tissue. We determined whether MaR1 is able to promote nerve regeneration as well as alleviating neuropathic pain, and to be considered as a putative therapeutic agent for treating PNI. METHODS: PNI models were constructed with 8-week-old adult male ICR mice and treated with NGF, MaR1 or saline by local application, intrathecal injection or intraplantar injection. Behavioral analysis and muscle atrophy test were assessed after treatment. Immunofluorescence assay was performed to examine the expression of ATF-3, GFAP, IBA1, and NF200. The expression transcript levels of inflammatory factors IL1ß, IL-6, and TNF-α were detected by quantitative real-time RT-PCR. AKT, ERK, mTOR, PI3K, phosphorylated AKT, phosphorylated ERK, phosphorylated mTOR, and phosphorylated PI3K levels were examined by western blot analysis. Whole-cell patch-clamp recordings were executed to detect transient receptor potential vanilloid 1 (TRPV1) currents. RESULTS: MaR1 demonstrated a more robust ability to promote sensory and motor function recovery in mice after sciatic nerve crush injury than NGF. Immunohistochemistry analyses showed that the administration of MaR1 to mice with nerve crush injury reduced the number of damaged DRG neurons, promoted injured nerve regeneration and inhibited gastrocnemius muscle atrophy. Western blot analysis of ND7/23 cells cultured with MaR1 or DRG neurons collected from MaR1 treated mice revealed that MaR1 regulated neurite outgrowth through the PI3K-AKT-mTOR signaling pathway. Moreover, MaR1 dose-dependently attenuated the mechanical allodynia and thermal hyperalgesia induced by nerve injury. Consistent with the analgesic effect, MaR1 inhibited capsaicin-elicited TRPV1 currents, repressed the nerve injury-induced activation of spinal microglia and astrocytes and reduced the production of proinflammatory cytokines in the spinal cord dorsal horn in PNI mice. CONCLUSIONS: Application of MaR1 to PNI mice significantly promoted nerve regeneration and alleviated neuropathic pain, suggesting that MaR1 is a promising therapeutic agent for PNI.


Assuntos
Neuralgia , Fosfatidilinositol 3-Quinases , Animais , Ácidos Docosa-Hexaenoicos , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Regeneração Nervosa , Neuralgia/metabolismo
3.
Biochem Biophys Res Commun ; 568: 103-109, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34214874

RESUMO

At present, stem cell transplantation has a significant therapeutic effect on spinal cord injury (SCI), however, it is still challenging for the seed cells selection. In this study, in order to explore cells with wide neural repair potentials, we selected the pluripotent stem cells multilineage-differentiating stress-enduring (Muse) cells, inducing the in vitro differentiation of human Muse cells into neural precursor cells (Muse-NPCs) by applying neural induction medium. Here, we found induced Muse-NPCs expressed neural stem cell markers Nestin and NCAM, capable of differentiating into three types of neural cells (neuron, astrocyte and oligodendrocyte), and have certain biological functions. When Muse-NPCs were transplanted into rats suffering from T10 SCI, motor function was improved. These results provide an insight for application of Muse-NPCs in cell therapy or tissue engineering for the repair of SCI in future.


Assuntos
Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Neurogênese , Traumatismos da Medula Espinal/terapia , Adulto , Animais , Astrócitos/citologia , Células Cultivadas , Feminino , Humanos , Neurônios/citologia , Oligodendroglia/citologia , Ratos , Ratos Sprague-Dawley
4.
Glia ; 67(1): 78-90, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30306657

RESUMO

Of the seven P2X receptor subtypes, P2X4 receptor (P2X4R) is widely distributed in the central nervous system, including in neurons, astrocytes, and microglia. Accumulating evidence supports roles for P2X4R in the central nervous system, including regulating cell excitability, synaptic transmission, and neuropathic pain. However, little information is available about the distribution and function of P2X4R in the peripheral nervous system. In this study, we find that P2X4R is mainly localized in the lysosomes of Schwann cells in the peripheral nervous system. In cultured Schwann cells, TNF-a not only enhances the synthesis of P2X4R protein but also promotes P2X4R trafficking to the surface of Schwann cells. TNF-a-induced BDNF secretion in Schwann cells is P2X4R dependent. in vivo experiments reveal that expression of P2X4R in Schwann cells of injured nerves is strikingly upregulated following nerve crush injury. Moreover, overexpression of P2X4R in Schwann cells by genetic manipulation promotes motor and sensory functional recovery and accelerates nerve remyelination via BDNF release following nerve injury. Our results suggest that enhancement of P2X4R expression in Schwann cells after nerve injury may be an effective approach to facilitate the regrowth and remyelination of injured nerves.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Receptores Purinérgicos P2X4/biossíntese , Recuperação de Função Fisiológica/fisiologia , Remielinização/fisiologia , Células de Schwann/metabolismo , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/agonistas , Células Cultivadas , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismos dos Nervos Periféricos/patologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X4/genética , Recuperação de Função Fisiológica/efeitos dos fármacos , Remielinização/efeitos dos fármacos , Células de Schwann/efeitos dos fármacos , Células de Schwann/patologia , Fator de Necrose Tumoral alfa/toxicidade
5.
J Neuroinflammation ; 16(1): 189, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653262

RESUMO

BACKGROUND: Prostatodynia is the main symptom of chronic prostatitis and the main reason that patients go to the hospital for treatment. Although a variety of factors, including inflammatory immune response, nervous system sensitization, and psychological factors, have been shown to play important roles in the induction and development of chronic pain in prostatitis, the underlying cause of chronic prostatodynia maintenance in prostatitis patients remains unclear. METHODS: A mouse model of chronic prostatitis induced by carrageenan injection was used. The von Frey test was used to measure pain behavior. The microglial and astrocyte activations were immunohistochemically demonstrated with antibodies against Iba1 and GFAP. The expression of cytokine or signaling pathway was detected by enzyme-linked immunosorbent assay (ELISA) and Western blotting. RESULTS: In this study, we provide several lines of evidence to demonstrate that activated spinal astrocytes contribute to the later phase (5 weeks after carrageenan injection) of carrageenan-induced prostatitis pain. First, activation of spinal astrocytes but not microglia was found in the spinal cord dorsal horn at 5 weeks. Second, intrathecal injection of the astroglial toxin L-2-Aminoadipate acid (L-AA) but not microglial inhibitor minocycline reduced mechanical allodynia at 5 weeks. Third, chronic prostatitis induced a profound and persistent upregulation of connexin-43 hemichannels in spinal astrocytes, and spinal injection of the connexin-43 inhibitor carbenoxolone (CBX) effectively reduced pain symptoms. Fourth, increased expression and release of chemokine C-X-C motif ligand 1 (CXCL1) in the spinal dorsal horn and intrathecal injection of a CXCL1 neutralizing antibody or the CXCR2 (a major receptor of CXCL1) antagonist SB225002 significantly reduced mechanical allodynia at 5 weeks. CONCLUSIONS: In this study, we found that a novel mechanism of activated spinal astrocytes plays a crucial role in maintaining chronic prostatitis-induced persistent pain via connexin-43-regulated CXCL1 production and secretion.


Assuntos
Astrócitos/patologia , Carragenina/toxicidade , Dor/patologia , Prostatite/patologia , Medula Espinal/patologia , Animais , Astrócitos/efeitos dos fármacos , Masculino , Camundongos , Dor/induzido quimicamente , Prostatite/induzido quimicamente , Medula Espinal/efeitos dos fármacos
6.
Phys Chem Chem Phys ; 17(3): 2121-6, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25484127

RESUMO

Room-temperature self-powered H2S sensing with high response and selectivity has been realized from a Cu-ZnO nanowire nanogenerator. Upon exposure to 1000 ppm H2S at room temperature, the piezoelectric output voltage of the device (5 at% Cu-ZnO) under compressive force decreases from 0.552 (in dry air) to 0.049 V, and the response is up to 1045, over 8 times larger than that of undoped ZnO nanowires. The selectivity against H2S is also very high at room temperature. The enhanced room-temperature H2S sensing performance can be attributed to the coupling of the piezoelectric screening effect of ZnO nanowires and the synergistic effect of the Cu dopant. This study should stimulate research into designing a new gas sensor for detecting toxic gases at room temperature.

7.
Phys Chem Chem Phys ; 17(16): 10856-60, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25820663

RESUMO

Highly sensitive humidity sensing has been realized from a Cd-doped ZnO nanowire (NW) nanogenerator (NG) as a self-powered/active gas sensor. The piezoelectric output of the device acts not only as a power source, but also as a response signal to the relative humidity (RH) in the environment. The response of Cd-ZnO (1 : 10) NWs reached up to 85.7 upon exposure to 70% relative humidity, much higher than that of undoped ZnO NWs. Cd dopant can increase the number of oxygen vacancies in the NWs, resulting in more adsorption sites on the surface of the NWs. Upon exposure to a humid environment, a large amount of water molecules can displace the adsorbed oxygen ions on the surface of Cd-ZnO NWs. This procedure can influence the carrier density in Cd-ZnO NWs and vary the screening effect on the piezoelectric output. Our study can stimulate a research trend on exploring composite materials for piezo-gas sensing.

8.
Nanotechnology ; 25(7): 075501, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24451084

RESUMO

A flexible piezo-driven active H2S sensor has been fabricated from CdS nanorod arrays. By coupling the piezoelectric and gas sensing properties of CdS nanorods, the piezoelectric output generated by CdS nanorod arrays acts not only as a power source, but also as a response signal to H2S. Under externally applied compressive force, the piezoelectric output of CdS nanorod arrays is very sensitive to H2S. Upon exposure to 600 ppm H2S, the piezoelectric output of the device decreased from 0.32 V (in air) to 0.12 V. Such a flexible device can be driven by the tiny mechanical energy in our living environment, such as human finger pinching. Our research can stimulate a research trend on designing new material systems and device structures for high-performance piezo-driven active gas sensors.

9.
Nanotechnology ; 25(11): 115502, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24561677

RESUMO

A self-powered gas sensor that can actively detect ethanol at room temperature has been realized from a Pt/ZnO nanoarray nanogenerator. Pt nanoparticles are uniformly distributed on the whole surface of ZnO nanowires. The piezoelectric output of Pt/ZnO nanoarrays can act not only as a power source, but also as a response signal to ethanol at room temperature. Upon exposure to dry air and 1500 ppm ethanol at room temperature, the piezoelectric output of the device under the same compressive strain is 0.672 and 0.419 V, respectively. Moreover, a linear dependence of the sensitivity on the ethanol concentration is observed. Such a linear ethanol sensing at room temperature can be attributed to the atmosphere-dependent variety of the screen effect on the piezoelectric output of ZnO nanowires, the catalytic properties of Pt nanoparticles, and the Schottky barriers at Pt/ZnO interfaces. The present results can stimulate research in the direction of designing new material systems for self-powered room-temperature gas sensing.

10.
Nanotechnology ; 25(26): 265501, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24916033

RESUMO

Room-temperature, high H2S sensing has been realized from a CuO/ZnO nanoarray self-powered, active gas sensor. The piezoelectric output of CuO/ZnO nanoarrays can act not only as the power source of the device, but also as the H2S sensing signal at room temperature. Upon exposure to 800 ppm H2S at room temperature, the piezoelectric output of the device greatly decreased from 0.738 V (in air) to 0.101 V. The sensitivity increased to 629.8, much higher than bare ZnO nanoarrays. As the device was exposed to H2S, a CuO/ZnO PN-junction was converted into a CuS/ZnO Ohmic contact, which greatly increased the electron density in the nanowire and enhanced the screen effect on the piezoelectric output. Our results can stimulate a research trend on designing new composite piezoelectric material for high-performance self-powered active gas sensors.

11.
Spine J ; 24(9): 1625-1634, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38679078

RESUMO

BACKGROUND: Osteoporosis, a metabolic bone disorder, markedly elevates fracture risks, with vertebral compression fractures being predominant. Antiosteoporotic treatments for patients with osteoporotic vertebral compression fractures (OVCF) lessen both the occurrence of subsequent fractures and associated pain. Thus, diagnosing osteoporosis in OVCF patients is vital. PURPOSE: The aim of this study was to develop a predictive radiographic model using T1 sequence MRI images to accurately determine whether patients with lumbar spine compression fractures also have osteoporosis. STUDY DESIGN: Retrospective cohort study. PATIENT SAMPLE: Patients over 45 years of age diagnosed with a fresh lumbar compression fracture. OUTCOME MEASURES: Diagnostic accuracy of the model (area under the ROC curve). METHODS: The study retrospectively collected clinical and imaging data (MRI and DEXA) from hospitalized lumbar compression fracture patients (L1-L4) aged 45 years or older between January 2021 and June 2023. Using the pyradiomics package in Python, features from the lumbar compression fracture vertebral region of interest (ROI) were extracted. Downscaling of the extracted features was performed using the Mann-Whitney U test and the least absolute shrinkage selection operator (LASSO) algorithm. Subsequently, six machine learning models (Naive Bayes, Support Vector Machine [SVM], Decision Tree, Random Forest, Extreme Gradient Boosting [XGBoost], and Light Gradient Boosting Machine [LightGBM]) were employed to train and validate these features in predicting osteoporosis comorbidity in OVCF patients. RESULTS: A total of 128 participants, 79 in the osteoporotic group and 49 in the nonosteoporotic group, met the study's inclusion and exclusion criteria. From the T1 sequence MRI images, 1906 imaging features were extracted in both groups. Utilizing the Mann-Whitney U test, 365 radiologic features were selected out of the initial 1,906. Ultimately, the lasso algorithm identified 14 significant radiological features. These features, incorporated into six conventional machine learning algorithms, demonstrated successful prediction of osteoporosis in the validation set. The NaiveBayes model yielded an area under the receiver operating characteristic curve (AUC) of 0.84, sensitivity of 0.87, specificity of 0.70, and accuracy of 0.81. CONCLUSIONS: A NaiveBayes machine learning algorithm can predict osteoporosis in OVCF patients using t1-sequence MRI images of lumbar compression fractures. This approach aims to obviate the necessity for further osteoporosis assessments, diminish patient exposure to radiation, and bolster the clinical care of patients with OVCF.


Assuntos
Fraturas por Compressão , Vértebras Lombares , Imageamento por Ressonância Magnética , Osteoporose , Fraturas por Osteoporose , Radiômica , Fraturas da Coluna Vertebral , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fraturas por Compressão/diagnóstico por imagem , Fraturas por Compressão/etiologia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/lesões , Aprendizado de Máquina , Osteoporose/diagnóstico por imagem , Osteoporose/complicações , Fraturas por Osteoporose/diagnóstico por imagem , Estudos Retrospectivos , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/etiologia
12.
Mol Neurobiol ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225968

RESUMO

In the vertebrate nervous system, myelination of nerve fibers is crucial for the rapid propagation of action potentials through saltatory conduction. Schwann cells-the main glial cells and myelinating cells of the peripheral nervous system-play a crucial role in myelination. Following injury during the repair of peripheral nerve injuries, a significant amount of ATP is secreted. This ATP release acts to trigger the dedifferentiation of myelinating Schwann cells into repair cells, an essential step for axon regeneration. Subsequently, to restore nerve function, these repair cells undergo redifferentiate into myelinating Schwann cells. Except for P2X4R, purine receptors such as P2X7R also play a significant role in this process. In the current study, decreased expression of P2X7R was observed after sciatic nerve injury, followed by a gradual increase to the normal level of P2X7R expression. In vivo experiments showed that the activation of P2X7R using an agonist injection promoted remyelination, while the antagonists hindered remyelination. Further, in vitro experiments supported these findings and demonstrated that P2X7R activation inhibited the proliferation of Schwann cells, but it promoted the migration and differentiation of the Schwann cells. Remyelination is a prominent feature of the nerve regeneration. In the current study, it was proposed that the manipulation of P2X7R expression in Schwann cells after nerve injury could be effective in facilitating nerve remyelination.

13.
Orthop Surg ; 15(10): 2515-2522, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37537414

RESUMO

OBJECTIVE: Displacement of bone cement following percutaneous vertebral augmentation for Kümmell disease (KD) presents a significant concern, resulting in increasing back pain and compromising daily activities. Unfortunately, current literature does not yet establish a validated and minimally invasive surgical intervention for this issue. This study aims to investigate the effects of a novel hollow pedicle screw combined with kyphoplasty (HPS-KP) in preventing bone cement displacement following simply percutaneous kyphoplasty for the management of KD. METHODS: A total of 22 patients (six males, 16 females, averagely aged 77.18 ± 7.63 years) with KD without neurological deficits treated by HPS-KP at the hospital between March 2021 and June 2022 were hereby selected, among which, there were three stage I KD cases, 12 stage II KD cases, and seven stage III KD cases according to Li's classification. Bone mineral density (BMD), spinal X-ray, computed tomography (CT), and magnetic resonance imaging (MRI) were examined before the operation. The operation time, intraoperative blood loss, and postoperative complications were all recorded. The follow-up focused on visual analog scale (VAS) score, Oswestry dysfunction index (ODI), anterior vertebral height (AVH), middle vertebral height (MVH), posterior vertebral height (PVH), wedge-shape affected vertebral Cobb angle (WCA), and bisegmental Cobb angle (BCA). One-way analysis of variance (ANOVA) followed by Bonferroni post-hoc test was employed for performing multiple comparisons in the present study. RESULTS: All patients having received the operation successfully were followed up for more than 8 months (ranging from 8 to 18 months). The operation time, intraoperative blood loss, and BMD (T-score) were 39.09 ± 5.64 min, 14.09 ± 3.98 ml, and - 3.30 ± 0.90 g/cm3 , respectively. Statistically significant differences were observed in the VAS score, ODI, AVH, MVH, and WCA (All p < 0.05), but there was no statistically significant difference in PVH and BCA at different time points (All p > 0.05). During follow-up, five patients suffered from bone cement leakage, and one presented an adjacent vertebral fracture and no bone cement displacement. CONCLUSION: HPS-KP could be safe and effective in the treatment of KD without neurological deficits, effectively relieving the symptoms of patients, restoring partial vertebral height, and preventing the occurrence of bone cement displacement.

14.
Dalton Trans ; 52(12): 3671-3681, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36847359

RESUMO

Metal-organic frameworks (MOFs) have become preferred heterogeneous catalytic materials for many reactions due to their advantages such as porosity and abundant active sites. Here, a 3D Mn-MOF-1 [Mn2(DPP)(H2O)3]·6H2O (DPP = 2,6-di(2,4-dicarboxyphenyl)-4-(pyridine-4-yl)pyridine) was successfully synthesized under solvothermal conditions. This Mn-MOF-1 possesses a 3D structure constructed by the combination of a 1D chain and the DPP4- ligand and features a micropore with a 1D drum-like shaped channel. Interestingly, Mn-MOF-1 can maintain the structure unchanged by the removal of coordinated and lattice water molecules, whose activated state (denoted as Mn-MOF-1a) contains rich Lewis acid sites (tetra- and pentacoordinated Mn2+ ions) and Lewis base sites (Npyridine atoms). Furthermore, Mn-MOF-1a shows excellent stability, which can be used to catalyze CO2 cycloaddition reactions efficiently under eco-friendly, solvent-free conditions. In addition, the synergistic effect of Mn-MOF-1a resulted in its promising potential in Knoevenagel condensation under ambient conditions. More importantly, the heterogeneous catalyst Mn-MOF-1a can be recycled and reused without an obvious decrease of activity for at least 5 reaction cycles. This work not only paves the way for the construction of Lewis acid-base bifunctional MOFs based on pyridyl-based polycarboxylate ligands but also demonstrates that Mn-based MOFs hold great promise as a heterogeneous catalyst toward both CO2 epoxidation and Knoevenagel condensation reactions.

15.
Pain ; 164(6): e286-e302, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508175

RESUMO

ABSTRACT: Although pain dysfunction is increasingly observed in Huntington disease, the underlying mechanisms still unknown. As a crucial Huntington-associated protein, Huntington-associated protein 1 (HAP1) is enriched in normal spinal dorsal horn and dorsal root ganglia (DRG) which are regarded as "primary sensory center," indicating its potential functions in pain process. Here, we discovered that HAP1 level was greatly increased in the dorsal horn and DRG under acute and chronic pain conditions. Lack of HAP1 obviously suppressed mechanical allodynia and hyperalgesia in spared nerve injury (SNI)-induced and chronic constriction injury-induced pain. Its deficiency also greatly inhibited the excitability of nociceptive neurons. Interestingly, we found that suppressing HAP1 level diminished the membrane expression of the L-type calcium channel (Cav1.2), which can regulate Ca 2+ influx and then influence brain-derived neurotrophic factor (BDNF) synthesis and release. Furthermore, SNI-induced activation of astrocytes and microglia notably decreased in HAP1-deficient mice. These results indicate that HAP1 deficiency might attenuate pain responses. Collectively, our results suggest that HAP1 in dorsal horn and DRG neurons regulates Cav1.2 surface expression, which in turn reduces neuronal excitability, BDNF secretion, and inflammatory responses and ultimately influences neuropathic pain progression.


Assuntos
Neuralgia , Animais , Camundongos , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia , Neuralgia/metabolismo , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/metabolismo
16.
iScience ; 25(4): 104046, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35287354

RESUMO

Mesenchymal stem cells (MSCs) have shown some efficacy in the COVID-19 treatment. We proposed that exogenous supplementation of ACE2 via MSCs (ACE2-MSCs) might have better therapeutic effects. We constructed SARS-CoV-2 spike glycoprotein stably transfected AT-II and Beas-2B cells and used SARS-CoV-2 spike pseudovirus to infect hACE2 transgenic mice. The results showed that spike glycoprotein transfection triggers the release of apoptotic bodies and formation of membrane pores in pyroptosis. Inflammatory factors and pyroptosis factors were highly upregulated by spike glycoprotein transfection. SARS-CoV-2 spike pseudovirus worsened lung injury and increased the main factors of cytokine storm and pyroptosis. Compared to using MSCs or rh-ACE2 alone, the administration of ACE2-MSCs could significantly reduce these factors better and alleviate lung injury in vivo and in vitro, which might be because of the increased activities of secretory ACE2. Our proposal is a promising therapeutic solution for preclinical or clinical research.

17.
Front Cell Neurosci ; 16: 836931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350167

RESUMO

Peripheral neuropathy is a common neurological issue that leads to sensory and motor disorders. Over time, the treatment for peripheral neuropathy has primarily focused on medications for specific symptoms and surgical techniques. Despite the different advantages of these treatments, functional recovery remains less than ideal. Schwann cells, as the primary glial cells in the peripheral nervous system, play crucial roles in physiological and pathological conditions by maintaining nerve structure and functions and secreting various signaling molecules and neurotrophic factors to support both axonal growth and myelination. In addition, stem cells, including mesenchymal stromal cells, skin precursor cells and neural stem cells, have the potential to differentiate into Schwann-like cells to perform similar functions as Schwann cells. Therefore, accumulating evidence indicates that Schwann cell transplantation plays a crucial role in the resolution of peripheral neuropathy. In this review, we summarize the literature regarding the use of Schwann cell/Schwann cell-like cell transplantation for different peripheral neuropathies and the potential role of promoting nerve repair and functional recovery. Finally, we discuss the limitations and challenges of Schwann cell/Schwann cell-like cell transplantation in future clinical applications. Together, these studies provide insights into the effect of Schwann cells/Schwann cell-like cells on cell therapy and uncover prospective therapeutic strategies for peripheral neuropathy.

18.
Neuropharmacology ; 202: 108835, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34648772

RESUMO

Peripheral nerve injuries (PNIs) often result in persistent neuropathic pain, seriously affecting quality of life. Existing therapeutic interventions for PNI-induced neuropathic pain are far from satisfactory. Extracellular signal-regulated kinases (ERKs) and p38 have been found to participate in triggering and maintaining PNI-induced neuropathic pain. However, ERK and p38 also contribute to axonal regeneration and motor function recovery after PNI, making it difficult to inhibit ERK and p38 for therapeutic purposes. In this study, we simultaneously characterized neuropathic pain and motor function recovery in a mouse sciatic nerve crush injury model to identify the time window for therapeutic interventions. We further demonstrated that delayed delivery of a combination of ERK and p38 inhibitors at three weeks after PNI could significantly alleviate PNI-induced neuropathic pain without affecting motor function recovery. Additionally, the combined use of these two inhibitors could suppress pain markedly better than either inhibitor alone, possibly reducing the required dose of each inhibitor and alleviating the side effects and risks of the inhibitors when used individually.


Assuntos
Butadienos/farmacologia , Butadienos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/fisiopatologia , Piridinas/farmacologia , Piridinas/uso terapêutico , Nervo Isquiático/lesões , Nervo Isquiático/fisiopatologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Axônios/fisiologia , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Regeneração Nervosa/genética , Neuralgia/genética , Recuperação de Função Fisiológica , Resultado do Tratamento , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Neural Regen Res ; 16(5): 899-904, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33229726

RESUMO

Pannexin 1 (Panx 1), as a large-pore membrane channel, is highly permeable to ATP and other signaling molecules. Previous studies have demonstrated the expression of Panx 1 in the nervous system, including astrocytes, microglia, and neurons. However, the distribution and function of Panx 1 in the peripheral nervous system are not clear. Blocking the function of Panx 1 pharmacologically (carbenoxolone and probenecid) or with small interfering RNA targeting pannexins can greatly reduce hypotonicity-induced ATP release. Treatment of Schwann cells with a Ras homolog family member (Rho) GTPase inhibitor and small interfering RNA targeting Rho or cytoskeleton disrupting agents, such as nocodazole or cytochalasin D, revealed that hypotonicity-induced ATP release depended on intracellular RhoA and the cytoskeleton. These findings suggest that Panx 1 participates in ATP release in Schwann cells by regulating RhoA and the cytoskeleton arrangement. This study was approved by the Animal Ethics Committee of Nantong University, China (No. S20180806-002) on August 5, 2018.

20.
Neurochem Int ; 138: 104774, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32474176

RESUMO

Olfactory dysfunction is related with various neurodegenerative and neuropsychiatric disorders such as Alzheimer's disease and Parkinson's disease, which show impaired cognitive functions. However, the effects of olfactory dysfunction on hippocampal dependent learning and memory remain elusive. In this study, mice were treated with intranasal zinc sulfate (ZnSO4) infusion which resulted in a complete but reversible loss of olfactory function. Olfaction was totally destroyed even 1 week after zinc sulfate treatment, but partially recovered 4 weeks later. We found learning and memory in Y-maze and fear conditioning were not affected by ZnSO4 1 week after the treatment, but learning and memory were severely destroyed 4 weeks later. Electrophysiology results showed impaired hippocampal long-term potentiation and long-term depression 4 weeks after the olfaction dysfunction, while only long-term depression was impaired 1 week after the treatment. Western blot showed that the expression and phosphorylation of GluA1 in zinc group did not show any increase after fear conditioning as the control mice. Serum corticosterone release was increased in olfactory deficit mice at baseline and after acute stress when tested 3, 10 and 20 days after the olfactory dysfunction. All these results indicated that reversible olfactory dysfunction elicited impaired hippocampal function in mice. The higher corticosterone release after olfactory deficiency might serve as an underling mechanism.


Assuntos
Corticosterona , Hipocampo/fisiopatologia , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/fisiopatologia , Plasticidade Neuronal/fisiologia , Transtornos do Olfato/fisiopatologia , Administração Intranasal , Animais , Corticosterona/sangue , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/sangue , Transtornos da Memória/induzido quimicamente , Camundongos , Camundongos Endogâmicos ICR , Plasticidade Neuronal/efeitos dos fármacos , Transtornos do Olfato/sangue , Transtornos do Olfato/induzido quimicamente , Sulfato de Zinco/administração & dosagem , Sulfato de Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA