Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Environ Manage ; 291: 112725, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33962290

RESUMO

Riboflavin is commercially produced primarily by bio-fermentation. Nonetheless, purification and separation are particularly complex and costly. Adsorption from the fermentation liquor is an alternative riboflavin separation technology during which a cost-efficient adsorbent is highly desired. In this study, a low-cost activated algal biomass-derived biochar (AABB) was applied as an adsorbent to efficiently adsorb riboflavin from an aqueous solution. The adsorption capacity of riboflavin on AABB increased with the increase in pyrolysis temperature and initial riboflavin concentration. The adsorption isotherms were well described by the Freundlich and Langmuir models. The AABB displayed excellent adsorption performance and its maximum adsorption capacity was 476.9 mg/g, which was 6.8, 6.8, and 5.2 times higher than that of laboratory-prepared activated rape straw biochar, activated broadbean shell biochar and commercial activated carbon, respectively, which was mainly ascribed to its larger specific surface area and abundant functional groups. The mass transfer model results showed that mass transfer resistance was dependent on both the film mass transfer and porous diffusion. Raman and Fourier transform-infrared spectra confirmed the presence of π-π interactions and hydrogen bonding between riboflavin and the AABB. The adsorption of riboflavin onto AABB was a spontaneous process, which was dominated by van der Waals forces. These results will be beneficial for developing effective riboflavin recovery technologies and simultaneously utilizing waste algal blooms.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Eutrofização , Concentração de Íons de Hidrogênio , Cinética , Riboflavina
2.
Hu Li Za Zhi ; 65(3): 58-70, 2018 06.
Artigo em Chinês | MEDLINE | ID: mdl-29790140

RESUMO

BACKGROUND: While cardiac resynchronization therapy improves the quality of life of patients with heart failure, some psychological and behavioral factors still affect the quality of life of these patients. However, information on the factors that affect the quality of life of these patients is limited. PURPOSE: To describe the quality of life and investigate the relationship between quality of life and behavioral and psychological factors such as depression, smoking, drinking, water and sodium restrictions, exercise, and adherence in patients with chronic heart failure following cardiac resynchronization therapy. METHODS: This cross-sectional study was conducted using the Morisky Medication Adherence Scale, Minnesota Living With Heart Failure Questionnaire, and Cardiac Depression Scale. A convenience sample of 141 patients with heart failure following cardiac resynchronization therapy were recruited from a tertiary academic hospital in Chengdu. RESULTS: The mean overall score of the Minnesota Living With Heart Failure Questionnaire was 30.89 (out of a total possible score of 105). Water restrictions, sodium restrictions, depression, and exercise were all shown to significantly predict quality of life among the participants. CONCLUSIONS / IMPLICATIONS FOR PRACTICE: This paper describes the quality of life and defines the behavioral factors that affect the quality of life of patients with heart failure following cardiac resynchronization therapy. The findings suggest that nurses should manage and conduct health education for patients in order to improve their quality of life.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca/psicologia , Qualidade de Vida , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Insuficiência Cardíaca/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Educação de Pacientes como Assunto
3.
J Hazard Mater ; 426: 127828, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34815121

RESUMO

Visible light catalysis has been widely coupled with persulfate activation for refractory pollutants removal, while the exact role of persulfate played in such composite system is still questionable. In this work, the relation between peroxymonosulfate (PMS) induced structure change and visible light responsive activity of inverse spinel: i.e., Zn2SnO4, was deciphered. Under the visible light illumination (λ> 420nm) PMS addition would endow the composite system with pollutant removal performance. Batch test revealed that 60% of bisphenol-A (5 mg L-1) was mineralized within 3 h reaction time, by dosing 0.81 mM PMS and 0.1 g L-1 catalyst. The above oxidative system was also effective for other refractory pollutants elimination. Further analysis indicated that PMS could reduce the band gap of spinel from 2.75 to 2.52 eV and thereby enabling its visible light activity. Photogenerated h+ induced •OH and e- mediated •O2- contributed to the pollutant removal while h+ played a leading role. Density functional theory revealed that PMS would capture oxygen atom of spinel and induce surface oxygen vacancy defect structure formation. Also, three-oxygen atom coordinated Zn was identified as the possible catalyze site. This work is valuable for deep understanding the exact role of persulfate in photocatalytic system.

4.
Chemosphere ; 244: 125577, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32050350

RESUMO

Persulfate based advanced oxidation process is a promising technology for refractory contaminants removal. Cobalt is considered as the most efficient metal in catalyzing peroxymonosulfate decomposition. Although different cobalt based nanomaterials have been developed, easy aggregation and metal ion leaching during catalytic reaction would result in its deficiency. To address the above issue, in this work, carbon supported Co/CoO core-shell nanocomposite was in-situ fabricated by using polyphenol-metal coordinate as precursor. Results indicated that cobalt nanoparticle with size of 10 nm was successfully prepared and well dispersed within the carbon matrix. By using as-prepared material as catalyst, 50 mg/L orange II was completely removed under the condition of 0.2 g/L peroxymonosulfate, 0.05 g/L catalyst, pH = 4.0-10.0. Both sulfate and hydroxyl radicals were formed during peroxymonosulfate decomposition, while sulfate radical dominated the pollutant removal. Mechanism study revealed that the cobalt was the key site for catalyzing peroxymonosulfate decomposition. This work might provide valuable information in designing and fabricating metal anchored carbon composite catalyst for efficiently and cost-effectively activate peroxymonosulfate.


Assuntos
Corantes/química , Nanocompostos/química , Peróxidos/química , Compostos Azo , Benzenossulfonatos , Carbono/química , Catálise , Cobalto/química , Modelos Químicos , Oxirredução , Sulfatos
5.
Sci Total Environ ; 705: 135959, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31841900

RESUMO

The sustainable management and recirculation of phosphorus resources are essential to our human lives. In this work, phosphorus removal and recovery from secondary effluent were achieved using municipal wastewater-derived materials as adsorbents. Through modification with 0.5 M NaOH for 30 min, iron containing sludge that originated from the coagulation pretreatment of municipal wastewater was successfully converted to phosphorus adsorbent. The maximal adsorption capacity of the prepared adsorbent was estimated to be 22 mg-P/g, and the adsorption performance remained stable in the pH range of 5-8. FeO(OH) was identified as the key adsorption site, and the ligand exchange mediated chemical adsorption was the main mechanism for phosphorus removal by the prepared material. Moreover, a laboratory-scale continuous-flow adsorption column experiment showed that the surplus phosphorus in secondary effluent could be readily reduced to <0.1 mg/L. By pyrolysis of P-laden alkali-treated iron sludge under oxygen limited conditions, the phosphorus was recovered and successfully applied to support wheat growth. This work provides valuable information for both the sustainable management of phosphorus streams in wastewater and cyclic utilization of waste sludge.

6.
Sci Total Environ ; 681: 56-65, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31102817

RESUMO

The inhibitory effects of oxytetracycline (OTC) on the anaerobic ammonium oxidation (anammox) performance were relieved by employing bio-augmentation (BA) tactics. However, the recovery mechanism was vague. The response of specific anammox activity (SAA), heme c, functional genes, extracellular polymeric substance (EPS) and antibiotics resistance genes (ARGs) to OTC inhibition and BA aid were traced in the present study. The results indicated that response of SAA, heme c content and functional genes, such as nirS, hzsA and hdh to OTC inhibition were not synchronous. The presence of the tetC, tetG, tetX, and intI1 genes enhanced the resistance of anammox sludge to OTC, thus accelerating the performance recovery when aided by BA. A significant correlation existed between number of anammox 16S rRNA gene copies and protein level in the soluble microbial products (SMP), between tetG gene relative abundance and polysaccharose in SMP and between tetG gene relative abundance and protein in bound EPS (EPSs). In nutshell, the current findings provide the first description of a recovery mechanism regarding OTC-inhibited anammox performance aided by BA based on functional genes and highlights the contribution of ARGs and the self-resistance ability of EPS.


Assuntos
Antibacterianos/toxicidade , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Oxitetraciclina/toxicidade , Matriz Extracelular de Substâncias Poliméricas , RNA Ribossômico 16S , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA