Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 207(3): 323-335, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191258

RESUMO

Rationale: Obstructive sleep apnea (OSA)-induced endothelial cell (EC) dysfunction contributes to OSA-related cardiovascular sequelae. The mechanistic basis of endothelial impairment by OSA is unclear. Objectives: The goals of this study were to identify the mechanism of OSA-induced EC dysfunction and explore the potential therapies for OSA-accelerated cardiovascular disease. Methods: The experimental methods include data mining, bioinformatics, EC functional analyses, OSA mouse models, and assessment of OSA human subjects. Measurements and Main Results: Using mined microRNA sequencing data, we found that microRNA 210 (miR-210) conferred the greatest induction by intermittent hypoxia in ECs. Consistently, the serum concentration of miR-210 was higher in individuals with OSA from two independent cohorts. Importantly, miR-210 concentration was positively correlated with the apnea-hypopnea index. RNA sequencing data collected from ECs transfected with miR-210 or treated with OSA serum showed a set of genes commonly altered by miR-210 and OSA serum, which are largely involved in mitochondrion-related pathways. ECs transfected with miR-210 or treated with OSA serum showed reduced [Formula: see text]o2 rate, mitochondrial membrane potential, and DNA abundance. Mechanistically, intermittent hypoxia-induced SREBP2 (sterol regulatory element-binding protein 2) bound to the promoter region of miR-210, which in turn inhibited the iron-sulfur cluster assembly enzyme and led to mitochondrial dysfunction. Moreover, the SREBP2 inhibitor betulin alleviated intermittent hypoxia-increased systolic blood pressure in the OSA mouse model. Conclusions: These results identify an axis involving SREBP2, miR-210, and mitochondrial dysfunction, representing a new mechanistic link between OSA and EC dysfunction that may have important implications for treating and preventing OSA-related cardiovascular sequelae.


Assuntos
Doenças Cardiovasculares , MicroRNAs , Apneia Obstrutiva do Sono , Doenças Vasculares , Animais , Camundongos , Humanos , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/genética , Hipóxia/genética , MicroRNAs/genética
2.
FASEB J ; 35(6): e21613, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33977576

RESUMO

Gout is a multifaceted inflammatory disease involving vascular impairments induced by hyperuricemia. Experiments using human umbilical vein endothelial cells treated with uric acid (UA), monosodium urate (MSU), or serum from gout patients showed increased expression of pro-inflammatory genes (ie, VCAM1, ICAM1, CYR61, CCNA1, and E2F1) with attendant increase in monocyte adhesion. Mechanistically, UA- or MSU-induced SREBP2 expression and its transcriptional activity. RNA sequencing analysis and real-time PCR showed the induction of YAP signaling and pro-inflammatory pathways in HUVECs transfected with adenovirus-SREBP2. The SREBP2 knockdown by siRNA partially abolished UA- or MSU-induced YAP activity, pro-inflammatory gene expression, and monocytes adhesion. Vascular intima from transgenic mice overexpressing SREBP2 in endothelium or mice with hyperuricemia exhibited activated YAP signaling and increased expression of pro-inflammatory genes. Betulin, an SREBP pharmacological inhibitor, attenuated the UA-, MSU-, or gout serum-induced endothelial cell inflammation and dysfunction. In the human study, endothelial cell function, assessed by EndoPAT, was negatively correlated with serum UA level among gouty patients and healthy controls. Collectively, UA or MSU causes endothelial dysfunction via SREBP2 transactivation of YAP. Betulin inhibition of SREBP2 may restrain gout-induced endothelial dysfunction.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Gota/fisiopatologia , Células Endoteliais da Veia Umbilical Humana/patologia , Hiperuricemia/fisiopatologia , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Ácido Úrico/efeitos adversos , Animais , Proteínas de Ciclo Celular/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hiperuricemia/induzido quimicamente , Masculino , Camundongos , Monócitos , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Fatores de Transcrição/genética
3.
Cardiology ; 143(1): 1-10, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31307032

RESUMO

The aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) in the vascular wall are crucial pathological events involved in cardiovascular impairments including hypertension, heart failure, and atherosclerosis. At the molecular level, the mammalian target of rapamycin (mTOR)-ribosomal protein S6 kinase beta-1 (p70S6K) signaling pathway is essential to potentiate VSMC proliferation and migration. Although angiotensin II receptor type 1 -(AT1-R) antagonists such as valsartan and telmisartan have a significant cardiovascular protective effect, the molecular basis of this class of drugs in VSMC proliferation and migration remains elusive. By using cultured VSMCs, adenosine monophosphate-activated protein kinase (AMPK) α2 knockout mice, and hypertensive rat models, this study investigated whether AT1-R antagonists can inhibit the mTOR-p70S6K signaling pathway in VSMCs and the vascular wall. Valsartan activated AMPK, which in turn suppressed reactive oxygen species production and consequently attenuated VSMC proliferation and migration. In vivo, a clinical dose of telmisartan significantly inhibited the mTOR-p70S6K signaling pathway in the vascular wall of wild-type but not AMPKα2-/- mice. Furthermore, spontaneously hypertensive rats had significantly elevated phosphorylation of mTOR and p70S6K in the aorta compared to Wistar-Kyoto rats, which were reduced by telmisartan administration. These data suggest that AT1-R antagonists inhibit VSMC proliferation and migration via their regulation of AMPK, mTOR, and p70S6K, which contribute to the cardioprotective effects of these drugs.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Músculo Liso Vascular/citologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Ratos Endogâmicos SHR , Ratos Wistar , Proteínas Quinases S6 Ribossômicas 70-kDa , Transdução de Sinais/efeitos dos fármacos , Telmisartan/farmacologia , Valsartana/farmacologia
4.
Adv Mater ; 36(28): e2311818, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38294175

RESUMO

Accurate structure control in dissipative assemblies (DSAs) is vital for precise biological functions. However, accuracy and functionality of artificial DSAs are far from this objective. Herein, a novel approach is introduced by harnessing complex chemical reaction networks rooted in coordination chemistry to create atomically-precise copper nanoclusters (CuNCs), specifically Cu11(µ9-Cl)(µ3-Cl)3L6Cl (L = 4-methyl-piperazine-1-carbodithioate). Cu(I)-ligand ratio change and dynamic Cu(I)-Cu(I) metallophilic/coordination interactions enable the reorganization of CuNCs into metastable CuL2, finally converting into equilibrium [CuL·Y]Cl (Y = MeCN/H2O) via Cu(I) oxidation/reorganization and ligand exchange process. Upon adding ascorbic acid (AA), the system goes further dissipative cycles. It is observed that the encapsulated/bridging halide ions exert subtle influence on the optical properties of CuNCs and topological changes of polymeric networks when integrating CuNCs as crosslink sites. CuNCs duration/switch period could be controlled by varying the ions, AA concentration, O2 pressure and pH. Cu(I)-Cu(I) metallophilic and coordination interactions provide a versatile toolbox for designing delicate life-like materials, paving the way for DSAs with precise structures and functionalities. Furthermore, CuNCs can be employed as modular units within polymers for materials mechanics or functionalization studies.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33425479

RESUMO

BACKGROUND: Obstructive Sleep Apnea (OSA) is a highly prevalent condition that is associated with several comorbidities including cardiovascular disease (CVD). Recent studies have revealed mixed results as to whether standard OSA therapy reverses CVD in adult patients. Thus, many advocate for earlier recognition of OSA induced CVD, as early as childhood, to prompt treatment antecedent to the onset of irreversible CVD. Here we investigated if the serum level of miR-92a, a known biomarker for CVD, can be used to identify patients with OSA in both children and adults. METHODS: Consecutive snoring patients undergoing polysomnography were recruited for determination of circulating miR-92a, in addition to inflammatory and metabolic profiles. We assessed whether circulating miR-92a was associated with OSA severity. RESULTS: Using two separate cohorts of adults (n=57) and children (n=13), we report a significant increase in the serum level of miR-92a in patients with severe OSA (p=0.021) and further demonstrate a significant correlation (Spearman rank correlation 0.308, p=0.010) with serum miR-92a levels and the apnea hypopnea index (AHI), a primary measure of OSA severity. Stepwise regression analysis revealed that serum miR-92a levels were independently associated with AHI (ß=0.332, p=0.003), age (ß=0.394, p=0.002) and LDL cholesterol levels (ß=0.368, p=0.004). CONCLUSION: Our study is the first to establish that miR-92a is a useful biomarker for OSA severity in both children and adults. Given the canonical role of miR-92a on endothelial dysfunction, miR-92a may be useful to identify early onset CVD in OSA patients or stratify patient CVD risk to identify those that may benefit from earlier OSA treatment.

6.
Bosn J Basic Med Sci ; 17(2): 132-137, 2017 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-28178430

RESUMO

Valsartan (VAL), an antagonist of angiotensin II receptor type 1, has antihypertensive and multiple cardiovascular protective effects. The pleiotropic functions of VAL are related to the increased synthesis and biological activity of intravascular nitric oxide (NO). In this study, the role and mechanisms of VAL in the synthesis of NO were examined in human umbilical vein endothelial cells (HUVECs). Ten µmol/L of VAL was used to treat EA.hy926 cells for 30 minutes, 1, 3, 6, 12, and 24 hours, and three concentrations of VAL (i.e., 10, 1, and 0.1 µmol/L) were used to treat EA.hy926 cells for 24 hours. The cells were divided into five groups: control, VAL, VAL + Compound C (adenosine monophosphate-activated protein kinase [AMPK] inhibitor, 1 µmol/L), VAL + LY294002 (Akt [protein kinase B] inhibitor, 10 µmol/L), and VAL + L-nitro-arginine methyl ester (L-NAME, endothelial NO synthase [eNOS] inhibitor, 500 µmol/L) groups. The NO content in the VAL-treated HUVEC line (EA.hy926) was detected using the nitrate reductase method, and western blot was used to detect the phosphorylation of Akt, AMPK, and eNOS, as well as the changes in total protein levels. VAL increased NO synthesis in EA.hy926 cells in time- and dose-dependent manners (p < 0.05) and the intracellular phosphorylation levels of Akt, AMPK, and eNOS at the corresponding time points. LY294002, Compound C, and L-NAME could inhibit the VAL-promoted NO synthesis. VAL activated Akt, AMPK, and eNOS, thus promoting NO synthesis and playing a protective role in endothelial cells. These results partially explained the mechanisms underlying the cardiovascular protective effects of VAL.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Valsartana/farmacologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Anti-Hipertensivos/farmacologia , Aterosclerose/metabolismo , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Morfolinas/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Fosforilação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA