RESUMO
BACKGROUND: The tumor suppressor and proapoptotic transcription factor P53 is induced (and activated) in several forms of heart failure, including cardiotoxicity and dilated cardiomyopathy; however, the precise mechanism that coordinates its induction with accessibility to its transcriptional promoter sites remains unresolved, especially in the setting of mature terminally differentiated (nonreplicative) cardiomyocytes. METHODS: Male and female control or TRIM35 (tripartite motif containing 35) overexpression adolescent (aged 1-3 months) and adult (aged 4-6 months) transgenic mice were used for all in vivo experiments. Primary adolescent or adult mouse cardiomyocytes were isolated from control or TRIM35 overexpression transgenic mice for all in vitro experiments. Adenovirus or small-interfering RNA was used for all molecular experiments to overexpress or knockdown, respectively, target genes in primary mouse cardiomyocytes. Patient dilated cardiomyopathy or nonfailing left ventricle samples were used for translational and mechanistic insight. Chromatin immunoprecipitation and DNA sequencing or quantitative real-time polymerase chain reaction (qPCR) was used to assess P53 binding to its transcriptional promoter targets, and RNA sequencing was used to identify disease-specific signaling pathways. RESULTS: Here, we show that E3-ubiquitin ligase TRIM35 can directly monoubiquitinate lysine-120 (K120) on histone 2B in postnatal mature cardiomyocytes. This epigenetic modification was sufficient to promote chromatin remodeling, accessibility of P53 to its transcriptional promoter targets, and elongation of its transcribed mRNA. We found that increased P53 transcriptional activity (in cardiomyocyte-specific Trim35 overexpression transgenic mice) was sufficient to initiate heart failure and these molecular findings were recapitulated in nonischemic human LV dilated cardiomyopathy samples. CONCLUSIONS: These findings suggest that TRIM35 and the K120Ub-histone 2B epigenetic modification are molecular features of cardiomyocytes that can collectively predict dilated cardiomyopathy pathogenesis.
Assuntos
Insuficiência Cardíaca , Histonas , Camundongos Transgênicos , Miócitos Cardíacos , Proteína Supressora de Tumor p53 , Ubiquitinação , Animais , Feminino , Humanos , Masculino , Camundongos , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Células Cultivadas , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Histonas/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Regiões Promotoras Genéticas , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genéticaRESUMO
PURPOSE: Secretory breast carcinoma is a rare histological subtype of invasive breast cancer and considered with an indolent clinical behavior. This study was conducted to analyze the clinicopathological features of patients with secretory breast carcinoma (SBC), explore the outcome, and compare the prognostic difference with invasive ductal breast carcinoma (IDC). METHODS AND MATERIALS: Patients with SBC diagnosed between 2006 and 2017 from Fudan University Shanghai Cancer Center were included in the study, excluding patients with previous malignant tumor history and incomplete clinical data or follow-up records. Peculiar clinicopathological and immunohistochemical features of the cases were fully described. Clinical data of 4979 cases of IDC were also evaluated during this period. After propensity score matching, prognostic analysis of SBCs and IDCs was calculated by Kaplan-Meier method and landmark analysis method. RESULTS: The data of 52 patients diagnosed with SBC were identified from the pathological files. Among them, 47 patients were women, and 5 were men. The median age of the 52 SBCs was 46 years (mean, 48.1 years; range, 10-80 years). The tumor sizes ranged from 0.3 to 6.8 cm, with a mean of 3.5 cm. Eight patients (15.4%) had positive axillary lymph node involvement. The molecular classification was mostly triple-negative breast cancer (65.4%). Fluorescence in situ hybridization confirmed the presence of ETV6::NTRK3 rearrangement in 16 of 18 cases (88.9%). Furthermore, Kaplan-Meier survival analysis and landmark analysis demonstrated that there were no statistically significant differences in DFS and OS between SBC and IDC patients. CONCLUSION: Although SBCs are generally associated with a favorable prognosis, our work exhibited that the clinicopathological features of SBC were partly different from former understandings, indicating that therapeutic procedure should be prudent. Further studies are necessary to fully identify the clinical behavior and predictive markers to improve diagnosis and management in this unique subtype of breast cancer.
Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma , Neoplasias de Mama Triplo Negativas , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Carcinoma Ductal de Mama/patologia , Hibridização in Situ Fluorescente , China , Prognóstico , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
Wurfbainia longiligularis and Wurfbainia villosa are both rich in volatile terpenoids and are 2 primary plant sources of Fructus Amomi used for curing gastrointestinal diseases. Metabolomic profiling has demonstrated that bornyl diphosphate (BPP)-related terpenoids are more abundant in the W. villosa seeds and have a wider tissue distribution in W. longiligularis. To explore the genetic mechanisms underlying the volatile terpenoid divergence, a high-quality chromosome-level genome of W. longiligularis (2.29 Gb, contig N50 of 80.39 Mb) was assembled. Functional characterization of 17 terpene synthases (WlTPSs) revealed that WlBPPS, along with WlTPS 24/26/28 with bornyl diphosphate synthase (BPPS) activity, contributes to the wider tissue distribution of BPP-related terpenoids in W. longiligularis compared to W. villosa. Furthermore, transgenic Nicotiana tabacum showed that the GCN4-motif element positively regulates seed expression of WvBPPS and thus promotes the enrichment of BPP-related terpenoids in W. villosa seeds. Systematic identification and analysis of candidate TPS in 29 monocot plants from 16 families indicated that substantial expansion of TPS-a and TPS-b subfamily genes in Zingiberaceae may have driven increased diversity and production of volatile terpenoids. Evolutionary analysis and functional identification of BPPS genes showed that BPP-related terpenoids may be distributed only in the Zingiberaceae of monocot plants. This research provides valuable genomic resources for breeding and improving Fructus Amomi with medicinal and edible value and sheds light on the evolution of terpenoid biosynthesis in Zingiberaceae.
Assuntos
Alquil e Aril Transferases , Terpenos , Humanos , Terpenos/metabolismo , Difosfatos , Melhoramento Vegetal , Frutas/genética , Frutas/metabolismo , Plantas/metabolismo , Alquil e Aril Transferases/genéticaRESUMO
Digital mask projection lithography (DMPL) technology is gaining significant attention due to its characteristics of free-mask, flexibility, and low cost. However, when dealing with target layouts featuring sizes smaller than the wavelength scale, accurately producing resist patterns that closely match the target layout using conventional methods to design the modulation coefficients of digital masks produced by spatial light modulators (SLM) becomes challenging. Here, we present digital inversion lithography technology (DILT), which offers what we believe to be a novel approach to reverse engineer the modulation coefficients of digital masks. In the case of binary amplitude modulation, DILT achieves a remarkable reduction in pattern errors (PE), reaching the original 0.26. At the same time, in the case of the gray amplitude modulation, the PE can be reduced to the original 0.05, which greatly improves the high-fidelity transfer of the target layout. This significant improvement enhances the accuracy of target design transfer. By leveraging the capabilities of DILT, DMPL can now attain higher precision and reliability, paving the way for more advanced applications in the field of micro-nano device manufacturing.
RESUMO
When the critical dimension (CD) of resist patterns nears the resolution limit of the digital micromirror device (DMD) maskless projection lithography (DMD-MPL), significant distortion can emerge in the silicon wafer due to the optical proximity effect (OPE). The significant distortion (breakpoints, line-end scaling, corner rounding, etc.) between resist patterns and target patterns results in reduced lithographic quality. To address this issue, we have proposed a pixel-based optical proximity correction (PB-OPC) method used for the hot-spot patterns with subwavelength sizes specifically designed for DMD-MPL. Employing an end-to-end learning neural network, the PB-OPC algorithm is both straightforward and efficient. A well-trained U-net framework facilitates the mapping from unoptimized masks to optimized masks. Experimental exposure trials have demonstrated that this method not only corrects OPC in general patterns but also effectively rectifies hot-spot patterns. The pattern error (PE) value can be reduced by about 30% in the design layouts. We believe this approach holds the potential to enhance the resolution and fidelity of resist patterns in DMD maskless lithography.
RESUMO
Recently, chiral metal-organic coordination materials have emerged as promising candidates for a wide range of applications in chiroptoelectronics, chiral catalysis, and information encryption, etc. Notably, the chiroptical effect of coordination chromophores makes them appealing for applications such as photodetectors, OLEDs, 3D displays, and bioimaging. The direct synthesis of chiral coordination materials using chiral organic ligands or complexes with metal-centered chirality is very often tedious and costly. In the case of ionic coordination materials, the combination of chiral anions with cationic, achiral coordination compounds through noncovalent interactions may endow molecular materials with desirable chiroptical properties. The use of such a simple chiral strategy has been proven effective in inducing promising circular dichroism and/or circularly polarized luminescence signals. This concept article mainly delves into the latest advances in exploring the efficacy of such a chiral anion strategy for transforming achiral coordination materials into chromophores with superb photo- or electro-chiroptical properties. In particular, ionic small-molecular metal complexes, metal clusters, coordination supramolecular assemblies, and metal-organic frameworks containing chiral anions are discussed. A perspective on the future opportunities on the preparation of chiroptical materials with the chiral anion strategy is also presented.
RESUMO
Photonic heterostructures with codable properties have shown great values as versatile information carriers at the micro and nanoscale. These heterostructures are typically prepared by a step-by-step growth or post-functionalization method to achieve varied emission colors among different building blocks. In order to realize high-throughput and multivariate information loading, we report here a strategy to integrate polarization signals into photonic heterojunctions. A U-shaped di-Pt(II) complex is assembled into highly-polarized yellow-phosphorescent crystalline microrods (Y-rod) by strong intermolecular Pt···Pt interaction. Upon end-initiated desorption of the incorporated CH2Cl2 solvents, Y-rod is transformed in a domino fashion into tri-block polarized photonic heterojunctions (PPHs) with alternate red-yellow-red emissions or red-phosphorescent microrods (R-rod). The red emissions of these structures are also highly polarized; however, their polarization directions are just orthogonal to those of the yellow phosphorescence of Y-rod. With the aid of a patterned mask, R-rod is further programmed into multi-block PPHs with precisely-controlled block sizes by side-allowed adsorption of CH2Cl2 vapor. X-ray diffraction analysis and theoretical calculations suggest that the solvent-regulated modulation of intramolecular and intermolecular excited states is critical for the construction of these PPHs.
RESUMO
Given that type I photosensitizers (PSs) possess a good hypoxic tolerance, developing an innovative tactic to construct type I PSs is crucially important, but remains a challenge. Herein, we present a smart molecular design strategy based on the Förster resonance energy transfer (FRET) mechanism to develop a type I photodynamic therapy (PDT) agent with an encouraging amplification effect for accurate hypoxic tumor therapy. Of note, benefiting from the FRET effect, the obtained nanostructured type I PDT agent (NanoPcSZ) with boosted light-harvesting ability not only amplifies superoxide radical (O2 â¢-) production but also promotes heat generation upon near-infrared light irradiation. These features facilitate NanoPcSZ to realize excellent phototherapeutic response under both normal and hypoxic environments. As a result, both in vitro and in vivo experiments achieved a remarkable improvement in therapeutic efficacy via the combined effect of photothermal action and type I photoreaction. Notably, NanoPcSZ can be eliminated from organs (including the liver, lung, spleen, and kidney) apart from the tumor site and excreted through urine within 24â h of its systemic administration. In this way, the potential biotoxicity of drug accumulation can be avoided and the biosafety can be further enhanced.
Assuntos
Transferência Ressonante de Energia de Fluorescência , Fotoquimioterapia , Fármacos Fotossensibilizantes , Superóxidos , Humanos , Superóxidos/química , Superóxidos/metabolismo , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Animais , Camundongos , Temperatura Alta , Nanoestruturas/química , Rim/metabolismo , Rim/efeitos dos fármacos , Raios Infravermelhos , Antineoplásicos/química , Antineoplásicos/farmacologiaRESUMO
Wurfbainia villosa is a well-known medicinal and edible plant that is widely cultivated in the Lingnan region of China. Its dried fruits (called Fructus Amomi) are broadly used in traditional Chinese medicine for curing gastrointestinal diseases and are rich in volatile terpenoids. Here, we report a high-quality chromosome-level genome assembly of W. villosa with a total size of approximately 2.80 Gb, 42 588 protein-coding genes, and a very high percentage of repetitive sequences (87.23%). Genome analysis showed that W. villosa likely experienced a recent whole-genome duplication event prior to the W. villosa-Zingiber officinale divergence (approximately 11 million years ago), and a recent burst of long terminal repeat insertions afterward. The W. villosa genome enabled the identification of 17 genes involved in the terpenoid skeleton biosynthesis pathway and 66 terpene synthase (TPS) genes. We found that tandem duplication events have an important contribution to the expansion of WvTPSs, which likely drove the production of volatile terpenoids. In addition, functional characterization of 18 WvTPSs, focusing on the TPS-a and TPS-b subfamilies, showed that most of these WvTPSs are multi-product TPS and are predominantly expressed in seeds. The present study provides insights into the genome evolution and the molecular basis of the volatile terpenoids diversity in W. villosa. The genome sequence also represents valuable resources for the functional gene research and molecular breeding of W. villosa.
Assuntos
Alquil e Aril Transferases , Alquil e Aril Transferases/genética , Terpenos/metabolismo , Plantas/metabolismo , CromossomosRESUMO
The Dammann grating (DG), which redistributes a collimated laser beam into a spot array with a uniform intensity, is a widely adopted approach for profile measurement. Conventional DGs for dense spot projection are binary phase gratings with precisely designed groove structures, which suffer from low efficiency, poor uniformity, and a hard-to-fabricate fine feature size when utilized for a large field of view (FOV). Here, we propose a new, to the best of our knowledge, hybrid DG architecture consisting of two different grating periods which effectively generates an engineering M2 × N2 spot array with a non-complex structural design. As a proof-of-concept, a dual-period hybrid DG with a two-scale grating period ratio of 11.88â µm/95.04â µm (â¼1/8) is designed and fabricated as a means to generate a dense 72 × 72 diffraction spot array with a FOV of 17° × 17°. In addition, the DG exhibits superior performance, with a high efficiency (>60%) and a low non-uniformity (<18%) at a wavelength of 532â nm. This kind of hybrid DG constructed from photoresist patterns with a minimum feature size of â¼1.2 µm can be perfectly fabricated by maskless projection lithography for large-scale and low-cost production. The proposed dual-period hybrid DG can pave the way for depth-perception-related applications such as face unlocking and motion sensing.
RESUMO
Recently, a proper genuine multipartite entanglement measure has been found for three-qubit pure states [see Xie and Eberly, Phys. Rev. Lett. 127, 040403 (2021)PRLTAO0031-900710.1103/PhysRevLett.127.040403], but capturing useful entanglement measures for mixed states has remained an open challenge. So far, it requires not only a full tomography in experiments, but also huge calculational labor. A leading proposal was made by Gühne, Reimpell, and Werner [Phys. Rev. Lett. 98, 110502 (2007)PRLTAO0031-900710.1103/PhysRevLett.98.110502], who used expectation values of entanglement witnesses to describe a lower bound estimation of entanglement. We provide here an extension that also gives genuine upper bounds of entanglement. This advance requires only the expectation value of any Hermitian operator. Moreover, we identify a class of operators A_{1} that not only give good estimates, but also require a remarkably small number of experimental measurements. In this Letter, we define our approach and illustrate it by estimating entanglement measures for a number of pure and mixed states prepared in our recent experiments.
RESUMO
OBJECTIVES: To investigate microvascular alterations in the Glisson system of biliary atresia (BA) patients after Kasai portoenterostomy (KP) using three-dimensional (3D) virtual histopathology based on X-ray phase-contrast CT (PCCT). METHODS: Liver explants from BA patients were imaged using PCCT, and 32 subjects were included and divided into two groups: KP (n = 16) and non-KP (n = 16). Combined with histological analysis and 3D visualization technology, 3D virtual histopathological assessment of the biliary, arterial, and portal venous systems was performed. According to loop volume ratio, 3D spatial density, relative surface area, tortuosity, and other parameters, pathological changes of microvasculature in the Glisson system were investigated. RESULTS: In the non-KP group, bile ducts mostly manifested as radial multifurcated hyperplasia and twisted into loops. In the KP group, the bile duct hyperplasia was less, and the loop volume ratio of bile ducts decreased by 13.89%. Simultaneously, the arterial and portal venous systems presented adaptive alterations in response to degrees of bile duct hyperplasia. Compared with the non-KP group, the 3D spatial density of arteries in the KP group decreased by 3.53%, and the relative surface area decreased from 0.088 ± 0.035 to 0.039 ± 0.015 (p < .01). Deformed portal branches gradually recovered after KP, with a 2.93% increase in 3D spatial density and a decrease in tortuosity from 1.17 ± 0.06 to 1.14 ± 0.04 (p < .01) compared to the non-KP group. CONCLUSION: 3D virtual histopathology via PCCT clearly reveals the microvascular structures in the Glisson system of BA patients and provides key insights into the morphological mechanism of microvascular adaptation induced by biliary tract dredging after KP in BA disease. KEY POINTS: ⢠3D virtual histopathology via X-ray phase-contrast computed tomography clearly presented the morphological structures and pathological changes of microvasculature in the Glisson system of biliary atresia patients. ⢠The morphological alterations of microvasculature in the Glisson system followed the competitive occupancy mechanism in the process of biliary atresia.
Assuntos
Atresia Biliar , Humanos , Lactente , Atresia Biliar/diagnóstico por imagem , Atresia Biliar/cirurgia , Portoenterostomia Hepática/métodos , Hiperplasia , Raios X , Tomografia Computadorizada por Raios XRESUMO
AIM: Transcutaneous electrical cranial-auricular acupoint stimulation (TECAS) is a novel non-invasive therapy that stimulates acupoints innervated by the trigeminal and auricular vagus nerves. An assessor-blinded, randomized, non-inferiority trial was designed to compare the efficacy of TECAS and escitalopram in mild-to-moderate major depressive disorder. METHODS: 468 participants received two TECAS sessions per day at home (n = 233) or approximately 10-13 mg/day escitalopram (n = 235) for 8 weeks plus 4-week follow-up. The primary outcome was clinical response, defined as a baseline-to-endpoint ≥50% reduction in Montgomery-Åsberg Depression Rating Scale (MADRS) score. Secondary outcomes included remission rate, changes in the severity of depression, anxiety, sleep and life quality. RESULTS: The response rate was 66.4% on TECAS and 63.2% on escitalopram with a 3.2% difference (95% confidence interval [CI], -5.9% to 12.9%) in intention-to-treat analysis, and 68.5% versus 66.2% with a 2.3% difference (95% CI, -6.9% to 11.4%) in per-protocol analysis. The lower limit of 95% CI of the differences fell within the prespecified non-inferiority margin of -10% (P ≤ 0.004 for non-inferiority). Most secondary outcomes did not differ between the two groups. TECAS-treated participants who experienced psychological trauma displayed a markedly greater response than those without traumatic experience (81.3% vs 62.1%, P = 0.013). TECAS caused much fewer adverse events than escitalopram. CONCLUSIONS: TECAS was comparable to escitalopram in improving depression and related symptoms, with high acceptability, better safety profile, and particular efficacy in reducing trauma-associated depression. It could serve an effective portable therapy for mild-to-moderate depression.
Assuntos
Transtorno Depressivo Maior , Escitalopram , Humanos , Pontos de Acupuntura , Citalopram , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/tratamento farmacológico , Método Duplo-Cego , Resultado do TratamentoRESUMO
Phthalocyanines are potentially promising photosensitizers (PSs) for photodynamic therapy (PDT), but the inherent defects such as aggregation-caused quenching effects and non-specific toxicity severely hinder their further application in PDT. Herein, we synthesized two zinc(II) phthalocyanines (PcSA and PcOA) monosubstituted with a sulphonate group in the alpha position with "O bridge" and "S bridge" as bonds and prepared a liposomal nanophotosensitizer (PcSA@Lip) by thin-film hydration method to regulate the aggregation of PcSA in the aqueous solution and enhance its tumor targeting ability. PcSA@Lip exhibited highly efficient production of superoxide radical (O2â-) and singlet oxygen (1O2) in water under light irradiation, which were 2.6-fold and 15.4-fold higher than those of free PcSA, respectively. Furthermore, PcSA@Lip was able to accumulate selectively in tumors after intravenous injection with the fluorescence intensity ratio of tumors to livers was 4.1:1. The significant tumor inhibition effects resulted in a 98% tumor inhibition rate after PcSA@Lip was injected intravenously at an ultra-low PcSA@Lip dose (0.8 nmol g-1 PcSA) and light dose (30 J cm-2). Therefore, the liposomal PcSA@Lip is a prospective nanophotosensitizer possessing hybrid type I and type II photoreactions with efficient photodynamic anticancer effects.
Assuntos
Fotoquimioterapia , Zinco , Estudos Prospectivos , Fármacos Fotossensibilizantes/química , Isoindóis , EnxofreRESUMO
The chemical constituents in stem leaf, root, and flower of Ixeris sonchifolia were identified by the ultra performance li-quid chromatography coupled with linear ion trap quadrupole-orbitrap mass spectrometry(UPLC-LTQ-Orbitrap-MS~n). The separation was performed on an Acquity UPLC BEH C_(18) column(2.1 mm×100 mm, 1.7 µm) with a mobile phase of water(containing 0.1% formic acid, A)-acetonitrile(B) with gradient elution. With electrospray ionization source, the data of 70% methanol extract from stem leaf, root and flower of I. sonchifolia were collected by high-resolution full-scan Fourier transform spectroscopy, data dependent acquisition, precursor ion scan, and selected ion monitoring in the negative and positive ion modes. The compounds were identified based on accurate molecular weight, retention time, fragment ions, comparison with reference standard, Clog P and references. A total of 131 compounds were identified from the 70% methanol extract of I. sonchifolia, including nucleosides, flavonoids, organic acids, terpenoids, and phenylpropanoids, and 119, 110, and 126 compounds were identified from the stem leaf, root and flower of I. sonchifolia, respectively. In addition, isorhamnetin, isorhamnetin-7-O-sambubioside and caffeylshikimic acid were discovered from I. sonchifolia for the first time. This study comprehensively analyzed and compared the chemical constituents in different parts of I. sonchifolia, which facilitated the discovery of effective substances and the development and application of medicinal material resources of I. sonchifolia.
Assuntos
Asteraceae , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/química , Metanol , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de MassasRESUMO
In many integrated optics systems, grating couplers are a key component of interfacing the external light source with in-plane photonic devices. Grating couplers with dual-band capability are often desired for expanding the operation spectrum of photonic systems. Here, we propose and theoretically investigate, for the first time, a 4.95 µm-8.5 µm dual-band grating coupler on a Ge-on-SOI platform. In addition to conventional structures, Bragg gratings are introduced to two wavelength division directions for crosstalk suppression. With this design, the simulated coupling efficiencies have respectively reached 59.93% and 46.38% for the 4.95 µm and 8.5 µm bands. This mid-infrared dual-band grating coupler may be useful for defense and environmental monitoring applications.
RESUMO
Neural network-based inverse lithography technology (NNILT) has been used to improve the computational efficiency of large-scale mask optimization for advanced photolithography. NNILT is now mostly based on labels, and its performance is affected by the quality of labels. It is difficult for NNILT to achieve high performance and extrapolation ability for mask optimization without using labels. Here, we propose a label-free NNILT (LF-NNILT), which is implemented completely without labels and greatly improves the printability of the target layouts and the manufacturability of the synthesized masks compared to the traditional ILT. More importantly, the optimization speed of LF-NNILT is two orders of magnitude faster than the traditional ILT. Furthermore, LF-NNILT is simpler to implement and can achieve better solvers to support the development of advanced lithography.
Assuntos
Redes Neurais de Computação , Impressão , TecnologiaRESUMO
In digital micromirror device (DMD)-based projection photolithography, the throughput largely depends on the effectiveness of the laser energy utilization, which is directly correlated to the diffraction efficiency of DMD. Here, to optimize the DMD diffraction efficiency and thus the laser energy utilization, we calculate the diffraction efficiencies Ediffraction of DMD with various pitch sizes at wavelengths ranging from 200 nm to 800 nm, using the two-dimensional blazed grating diffraction theory. Specifically, the light incident angle is optimized for 343 nm laser and 7.56 µm pitch-size DMD, and the maximum single-order diffraction efficiency Ediffraction is increased from 40% to 96%. Experimentally, we use the effective energy utilization ηeff = Ediffraction,(m,n)/Σ[Ediffraction,(m,n)] at the entrance pupil plane of the objective to verify the effectiveness of the optimized illumination angle in a lithography illumination system with parallel beams of two wavelengths (343 nm and 515 nm). The ηeff of a "blaze" order at a 34° angle of incidence can be optimized up to 88%. The experimental results are consistent with the tendency of the calculated results, indicating that this optimization model can be used to improve the energy utilization of projection lithography with the arbitrarily designable wavelengths and the DMD's pitch size.
RESUMO
Maskless lithography technologies have been developed and played an important role in the fabrication of functional micronano devices for microelectronics, biochips and photonics. Optical projection lithography based on digital micromirror device (DMD) is an efficient maskless lithography technology that can rapidly fabricate complex structures. The precise modulation of gap width by DMD maskless optical projection lithography (MOPL) using femtosecond laser becomes important for achieving micronano structures. Herein, we have investigated the relationship between the structure morphology and the light intensity distribution at the image plane by multi-slit diffraction model and Abbe imaging principle, and optimized the gap width more accurately by modulating exposure energy. The aperture diameter of the objective lens has a substantial effect on the pattern consistency. The continuously adjustable structural gap widths of 2144â nm, 2158â nm and 1703 nm corresponding to 6, 12, 24 pixels are obtained by varying the exposure energy in the home-built MOPL system. However, the ideal gap structure cannot be obtained only by adjusting the exposure energy when the gap width is small, such as 1 or 2 pixels. Furthermore, we have proposed an alternative way to achieve fine gap structures through the structural decomposition design and precise control of exposure energy in different regions without changing the MOPL optical system. This study would provide a promising protocol for fabricating gap microstructures with controllable configuration using MOPL technique.
RESUMO
RATIONALE: Right ventricular (RV) fibrosis in pulmonary arterial hypertension contributes to RV failure. While RV fibrosis reflects changes in the function of resident RV fibroblasts (RVfib), these cells are understudied. OBJECTIVE: Examine the role of mitochondrial metabolism of RVfib in RV fibrosis in human and experimental pulmonary arterial hypertension. METHODS AND RESULTS: Male Sprague-Dawley rats received monocrotaline (MCT; 60 mg/kg) or saline. Drinking water containing no supplement or the PDK (pyruvate dehydrogenase kinase) inhibitor dichloroacetate was started 7 days post-MCT. At week 4, treadmill testing, echocardiography, and right heart catheterization were performed. The effects of PDK activation on mitochondrial dynamics and metabolism, RVfib proliferation, and collagen production were studied in RVfib in cell culture. Epigenetic mechanisms for persistence of the profibrotic RVfib phenotype in culture were evaluated. PDK expression was also studied in the RVfib of patients with decompensated RV failure (n=11) versus control (n=7). MCT rats developed pulmonary arterial hypertension, RV fibrosis, and RV failure. MCT-RVfib (but not left ventricular fibroblasts) displayed excess mitochondrial fission and had increased expression of PDK isoforms 1 and 3 that persisted for >5 passages in culture. PDK-mediated decreases in pyruvate dehydrogenase activity and oxygen consumption rate were reversed by dichloroacetate (in RVfib and in vivo) or siRNA targeting PDK 1 and 3 (in RVfib). These interventions restored mitochondrial superoxide and hydrogen peroxide production and inactivated HIF (hypoxia-inducible factor)-1α, which was pathologically activated in normoxic MCT-RVfib. Redox-mediated HIF-1α inactivation also decreased the expression of TGF-ß1 (transforming growth factor-beta-1) and CTGF (connective tissue growth factor), reduced fibroblast proliferation, and decreased collagen production. HIF-1α activation in MCT-RVfib reflected increased DNMT (DNA methyltransferase) 1 expression, which was associated with a decrease in its regulatory microRNA, miR-148b-3p. In MCT rats, dichloroacetate, at therapeutic levels in the RV, reduced phospho-pyruvate dehydrogenase expression, RV fibrosis, and hypertrophy and improved RV function. In patients with pulmonary arterial hypertension and RV failure, RVfib had increased PDK1 expression. CONCLUSIONS: MCT-RVfib manifest a DNMT1-HIF-1α-PDK-mediated, chamber-specific, metabolic memory that promotes collagen production and RV fibrosis. This epigenetic mitochondrial-metabolic pathway is a potential antifibrotic therapeutic target.