Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Cell ; 185(13): 2265-2278.e14, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35568034

RESUMO

Breakthrough infections by SARS-CoV-2 variants become the global challenge for pandemic control. Previously, we developed the protein subunit vaccine ZF2001 based on the dimeric receptor-binding domain (RBD) of prototype SARS-CoV-2. Here, we developed a chimeric RBD-dimer vaccine approach to adapt SARS-CoV-2 variants. A prototype-Beta chimeric RBD-dimer was first designed to adapt the resistant Beta variant. Compared with its homotypic forms, the chimeric vaccine elicited broader sera neutralization of variants and conferred better protection in mice. The protection of the chimeric vaccine was further verified in macaques. This approach was generalized to develop Delta-Omicron chimeric RBD-dimer to adapt the currently prevalent variants. Again, the chimeric vaccine elicited broader sera neutralization of SARS-CoV-2 variants and conferred better protection against challenge by either Delta or Omicron SARS-CoV-2 in mice. The chimeric approach is applicable for rapid updating of immunogens, and our data supported the use of variant-adapted multivalent vaccine against circulating and emerging variants.


Assuntos
COVID-19 , Vacinas , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , SARS-CoV-2/genética
2.
Cell ; 177(7): 1714-1724.e12, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31080063

RESUMO

Arthritogenic alphaviruses, such as Chikungunya virus (CHIKV), cause severe and debilitating rheumatic diseases worldwide, resulting in severe morbidity and economic costs. Recently, MXRA8 was reported as an entry receptor. Here, we present the crystal structures of the mouse MXRA8, human MXRA8 in complex with the CHIKV E protein, and the cryo-electron microscopy structure of human MXRA8 and CHIKV virus-like particle. MXRA8 has two Ig-like domains with unique structural topologies. This receptor binds in the "canyon" between two protomers of the E spike on the surface of the virion. The atomic details at the interface between the two binding entities reveal that both the two domains and the hinge region of MXRA8 are involved in interaction with CHIKV E1-E2 residues from two protomers. Notably, the stalk region of MXRA8 is critical for CHIKV virus entry. This finding provides important information regarding the development of therapeutic countermeasures against those arthritogenic alphaviruses.


Assuntos
Vírus Chikungunya/química , Proteínas de Membrana/química , Proteínas do Envelope Viral/química , Internalização do Vírus , Animais , Vírus Chikungunya/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Domínios Proteicos , Células Vero , Proteínas do Envelope Viral/metabolismo
3.
EMBO J ; 43(8): 1484-1498, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467833

RESUMO

Since SARS-CoV-2 Omicron variant emerged, it is constantly evolving into multiple sub-variants, including BF.7, BQ.1, BQ.1.1, XBB, XBB.1.5 and the recently emerged BA.2.86 and JN.1. Receptor binding and immune evasion are recognized as two major drivers for evolution of the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein. However, the underlying mechanism of interplay between two factors remains incompletely understood. Herein, we determined the structures of human ACE2 complexed with BF.7, BQ.1, BQ.1.1, XBB and XBB.1.5 RBDs. Based on the ACE2/RBD structures of these sub-variants and a comparison with the known complex structures, we found that R346T substitution in the RBD enhanced ACE2 binding upon an interaction with the residue R493, but not Q493, via a mechanism involving long-range conformation changes. Furthermore, we found that R493Q and F486V exert a balanced impact, through which immune evasion capability was somewhat compromised to achieve an optimal receptor binding. We propose a "two-steps-forward and one-step-backward" model to describe such a compromise between receptor binding affinity and immune evasion during RBD evolution of Omicron sub-variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos
4.
EMBO Rep ; 25(7): 3116-3136, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38877169

RESUMO

A novel pangolin-origin MERS-like coronavirus (CoV), MjHKU4r-CoV-1, was recently identified. It is closely related to bat HKU4-CoV, and is infectious in human organs and transgenic mice. MjHKU4r-CoV-1 uses the dipeptidyl peptidase 4 (DPP4 or CD26) receptor for virus entry and has a broad host tropism. However, the molecular mechanism of its receptor binding and determinants of host range are not yet clear. Herein, we determine the structure of the MjHKU4r-CoV-1 spike (S) protein receptor-binding domain (RBD) complexed with human CD26 (hCD26) to reveal the basis for its receptor binding. Measuring binding capacity toward multiple animal receptors for MjHKU4r-CoV-1, mutagenesis analyses, and homology modeling highlight that residue sites 291, 292, 294, 295, 336, and 344 of CD26 are the crucial host range determinants for MjHKU4r-CoV-1. These results broaden our understanding of this potentially high-risk virus and will help us prepare for possible outbreaks in the future.


Assuntos
Dipeptidil Peptidase 4 , Especificidade de Hospedeiro , Ligação Proteica , Receptores Virais , Glicoproteína da Espícula de Coronavírus , Tropismo Viral , Humanos , Animais , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/genética , Receptores Virais/metabolismo , Receptores Virais/genética , Receptores Virais/química , Camundongos , Sítios de Ligação , Internalização do Vírus , Modelos Moleculares , Domínios Proteicos , Tropismo ao Hospedeiro
5.
J Virol ; 98(3): e0115723, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305152

RESUMO

Pet golden hamsters were first identified being infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delta variant of concern (VOC) and transmitted the virus back to humans in Hong Kong in January 2022. Here, we studied the binding of two hamster (golden hamster and Chinese hamster) angiotensin-converting enzyme 2 (ACE2) proteins to the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 prototype and eight variants, including alpha, beta, gamma, delta, and four omicron sub-variants (BA.1, BA.2, BA.3, and BA.4/BA.5). We found that the two hamster ACE2s present slightly lower affinity for the RBDs of all nine SARS-CoV-2 viruses tested than human ACE2 (hACE2). Furthermore, the similar infectivity to host cells expressing hamster ACE2s and hACE2 was confirmed with the nine pseudotyped SARS-CoV-2 viruses. Additionally, we determined two cryo-electron microscopy (EM) complex structures of golden hamster ACE2 (ghACE2)/delta RBD and ghACE2/omicron BA.3 RBD. The residues Q34 and N82, which exist in many rodent ACE2s, are responsible for the lower binding affinity of ghACE2 compared to hACE2. These findings suggest that all SARS-CoV-2 VOCs may infect hamsters, highlighting the necessity of further surveillance of SARS-CoV-2 in these animals.IMPORTANCESARS-CoV-2 can infect many domestic animals, including hamsters. There is an urgent need to understand the binding mechanism of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants to hamster receptors. Herein, we showed that two hamster angiotensin-converting enzyme 2s (ACE2s) (golden hamster ACE2 and Chinese hamster ACE2) can bind to the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 prototype and eight variants and that pseudotyped SARS-CoV-2 viruses can infect hamster ACE2-expressing cells. The binding pattern of golden hamster ACE2 to SARS-CoV-2 RBDs is similar to that of Chinese hamster ACE2. The two hamster ACE2s present slightly lower affinity for the RBDs of all nine SARS-CoV-2 viruses tested than human ACE2. We solved the cryo-electron microscopy (EM) structures of golden hamster ACE2 in complex with delta RBD and omicron BA.3 RBD and found that residues Q34 and N82 are responsible for the lower binding affinity of ghACE2 compared to hACE2. Our work provides valuable information for understanding the cross-species transmission mechanism of SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2 , Cricetulus , Microscopia Crioeletrônica , Especificidade de Hospedeiro , Mesocricetus , Animais , Cricetinae , Humanos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/ultraestrutura , Linhagem Celular , COVID-19/virologia , Cricetulus/metabolismo , Cricetulus/virologia , Mesocricetus/metabolismo , Mesocricetus/virologia , Mutação , Animais de Estimação/metabolismo , Animais de Estimação/virologia , Ligação Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/ultraestrutura , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/ultraestrutura
6.
J Virol ; 97(9): e0050523, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37676003

RESUMO

SARS-CoV-2 has been expanding its host range, among which the white-tailed deer (WTD), Odocoileus virginianus, became the first wildlife species infected on a large scale and might serve as a host reservoir for variants of concern (VOCs) in case no longer circulating in humans. In this study, we comprehensively assessed the binding of the WTD angiotensin-converting enzyme 2 (ACE2) receptor to the spike (S) receptor-binding domains (RBDs) from the SARS-CoV-2 prototype (PT) strain and multiple variants. We found that WTD ACE2 could be broadly recognized by all of the tested RBDs. We further determined the complex structures of WTD ACE2 with PT, Omicron BA.1, and BA.4/5 S trimer. Detailed structural comparison revealed the important roles of RBD residues on 486, 498, and 501 sites for WTD ACE2 binding. This study deepens our understanding of the interspecies transmission mechanisms of SARS-CoV-2 and further addresses the importance of constant monitoring on SARS-CoV-2 infections in wild animals. IMPORTANCE Even if we manage to eliminate the virus among humans, it will still circulate among wildlife and continuously be transmitted back to humans. A recent study indicated that WTD may serve as reservoir for nearly extinct SARS-CoV-2 strains. Therefore, it is critical to evaluate the binding abilities of SARS-CoV-2 variants to the WTD ACE2 receptor and elucidate the molecular mechanisms of binding of the RBDs to assess the risk of spillback events.

7.
Acc Chem Res ; 56(14): 1942-1952, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37364229

RESUMO

ConspectusCharacterized by the reverse intersystem crossing (RISC) process from the triplet state (T1) to the singlet state (S1), thermally activated delayed fluorescence (TADF) emitters, which produce light by harvesting both triplet and singlet excitons without noble metals, are considered to be third-generation organic electroluminescent materials. Rapid advances in molecular design criteria, understanding the photophysics underlying TADF, and applications of TADF materials as emitters in organic light-emitting diodes (OLEDs) have been achieved. Theoretically, enhanced spin-orbit coupling (SOC) between singlet and triplet states can result in a fast RISC process and thus a high light-emitting efficiency according to Fermi's golden rule. Therefore, regulating the nature of triplet excited states by elaborate molecular design to improve SOC is an effective approach to high-efficiency TADF-based OLEDs. Generally, on one hand, the increased local excited (LE) populations of the excited triplet state can significantly improve the nature flips between S1 and T1. On other hand, the reduced energy gap between S1 and the lowest triplet with a charge transfer (CT) characteristic can also enhance their vibronic coupling. Consequently, it is vital to determine how to regulate the nature of triplet excited states by molecular design to guide the material synthesis, especially for polymeric emitters.In this Account, we focus on modulating the strategy of triplet excited states for TADF emitters and an in-depth understanding of the photophysical processes, leading to optimized OLED device performance. We include several kinds of strategies to control the nature of triplet excited states to guide the synthesis of small-molecule and polymer TADF emitters: (1) Modulating the electronic distribution of conjugated polymeric backbones by copolymerizing the electron-donating host: accordingly, the nature of excited states can be changed, especially for triplets. Meanwhile, the utilization of excitons can be systematically improved by adjusting the electronic structure of triplet states with long-range distribution in the conjugated polymeric backbones. (2) Halogenating acceptors of TADF units: the introduced halogen atoms would reestablish the electronic distribution of the triplet and relocate the hole orbits, resulting in a CT and LE hybrid nature of a triplet transformed into a LE-predominant state, which favors the RISC process. (3) Stereostructure regulation: by constructing a diverse arrangement of three-dimensional spatial configurations or conjugated architectures, the nature of the triplet can also be finely tuned, such as hyperbranched structures with multiple triplet-singlet vibration couplings, half-dendronized-half-encapsulated asymmetric systems, trinaphtho[3,3,3] propeller-based three-dimensional spatial interspersed structures, intramolecular close-packed donor-acceptor systems, and so on. We hope that this Account will provide insights into new structures and mechanisms for achieving high-performance OLEDs based on regulating the nature of triplet excited states.

8.
Int J Med Sci ; 21(8): 1541-1551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903929

RESUMO

Purpose: To compare the clinical outcomes, feasibility, and safety between groups with sutured and sutureless wound closure in congenital ectopia lentis (CEL) patients. Methods: Patients with CEL who received phacoemulsification combined with intrascleral fixation of capsular hook (CH) and implantation of capsular tension ring (CTR) and in-the-bag intraocular lens (IOL) were included in this study. Results: A total of 68 eyes of 34 patients aged 18 years or younger were enrolled in this study. Incisions of 21 patients (34 eyes) did not require sutures while sutures were applied in 21 patients (34 eyes). Postoperative uncorrected distance visual acuity, best corrected distance visual acuity and intraocular pressure measurements were comparable on follow-up visits (P > 0.05). The magnitude of surgically induced astigmatism was significantly greater (P = 0.001) in the suture group (Median: 0.47; IQ: 1.63, 2.97) than in the sutureless group (Median: 0.88; IQ: 0.63, 1.35). No cases of endophthalmitis and retinal detachment were found postoperatively in either group, while suture-related complications were observed in the sutured group, including loose suture with discomfort in 5 (14.71%) eyes, loose suture with mucus infiltration in 3 (8.82%) eyes. In total, 22 sutures (64.71%) of 34 eyes required removal. Conclusions: Sutureless clear corneal incision in CEL patients can achieve satisfactory clinical results comparable to sutured wound closure in terms of the efficacy and safety. Advantages of this approach are the reduced risk of suture-related complications, no need for additional surgery under general anesthesia for suture removal, and less cost.


Assuntos
Córnea , Ectopia do Cristalino , Implante de Lente Intraocular , Procedimentos Cirúrgicos sem Sutura , Acuidade Visual , Humanos , Feminino , Masculino , Ectopia do Cristalino/cirurgia , Adolescente , Criança , Implante de Lente Intraocular/métodos , Implante de Lente Intraocular/efeitos adversos , Procedimentos Cirúrgicos sem Sutura/métodos , Procedimentos Cirúrgicos sem Sutura/efeitos adversos , Córnea/cirurgia , Córnea/patologia , Facoemulsificação/métodos , Facoemulsificação/efeitos adversos , Técnicas de Sutura/efeitos adversos , Resultado do Tratamento , Estudos de Viabilidade , Suturas
9.
Angew Chem Int Ed Engl ; 63(11): e202319380, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38246876

RESUMO

Organic light-emitting transistors (OLETs) are highly integrated and minimized optoelectronic devices with significant potential superiority in smart displays and optical communications. To realize these various applications, it is urgently needed for color-tunable emission in OLETs, but remains a great challenge as a result of the difficulty for designing organic semiconductors simultaneously integrating high carrier mobility, strong solid-state emission, and the ability for potential tunable colors. Herein, a high mobility emissive excimer organic semiconductor, 2,7-di(2-anthryl)-9H-fluorene (2,7-DAF) was reasonably designed by introducing a rotatable carbon-carbon single bond connecting two anthracene groups at the 2,7-sites of fluorene, and the small torsion angles simultaneously guarantee effective conjugation and suppress fluorescence quenching. Indeed, the unique stable dimer arrangement and herringbone packing mode of 2,7-DAF single crystal enables its superior integrated optoelectronic properties with high carrier mobility of 2.16 cm2 ⋅ V-1 ⋅ s-1 , and strong excimer emission with absolute photoluminescence quantum yield (PLQY) of 47.4 %. Furthermore, the voltage-dependent electrically induced color-tunable emission from orange to blue was also demonstrated for an individual 2,7-DAF single crystal based OLETs for the first time. This work opens the door for a new class of high mobility emissive excimer organic semiconductors, and provides a good platform for the study of color-tunable OLETs.

10.
Macromol Rapid Commun ; 44(19): e2300233, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37366221

RESUMO

In this study, a series of ladder-like polysiloxanes are synthesized by introducing double-chain Si-O-Si polymer as the backbone and the carbazole and triphenylphosphine oxide with high triplet energy as side groups. The ladder-like structures of polysiloxanes are achieved through a controlled polymerization method that involves the monomer self-assembly and subsequent surface-restricted solid-phase in situ condensation through freeze-drying. The introduction of siloxane improves thermal stability of the polymers and inhibits the conjugation of the polymers between the side groups, leading to an increase in the triplet energy level. Therefore, all these polymers perform higher triplet energy levels than phosphorescent emitter (FIrpic). The cyclic voltammetry measurements demonstrate that the bipolar polymer exhibits a high highest occupied molecular orbital (HOMO) value of -5.32 eV, which is consistent with the work function of ITO/PEDOT:PSS, consequently facilitating hole injection. Furthermore, the incorporation of triphenylphosphine oxide promotes electron injection. Molecular simulations reveal that the frontier orbital distributions of the bipolar polymer are located on the carbazole and triphenylphosphine groups, respectively, which facilitate the transport of electrons and holes.


Assuntos
Polímeros , Siloxanas , Carbazóis , Oxigênio
11.
Macromol Rapid Commun ; 44(22): e2300404, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37660351

RESUMO

To study the effect of polymeric structures on second-order nonlinear optical properties, polysiloxanes materials based on azobenzene as chromophore have been designed and synthesized successfully. Herein, the siloxane monomer is directly bonded to azobenzene units by palladium catalysis, which avoids the influence of flexible chains on the photoelectric properties of azobenzene. According to the different positions of azobenzene units in the polymers, it is divided into side-chain, main-chain, and alternative-type polymers. The chemical structures of obtained polysiloxanes are confirmed by nuclear magnetic resonance spectra and mass spectra. Three polymers present high thermal decomposition temperatures and the medium glass transition temperatures. The effects of polymeric structures on the second-order nonlinear properties are compared. The main-chain polysiloxane possesses the highest thermal stability because of its rigid architecture. The side-chain polysiloxane shows the fastest isomerization transformation rate due to the large free volume. Besides, the alternative polysiloxane displays the best second-order nonlinear performance with second harmonic generation coefficient (d33 ) value of 47.6 pm V-1 , which is 3 times higher than the side-chain one.


Assuntos
Compostos Azo , Siloxanas , Compostos Azo/química , Polímeros/química , Temperatura
12.
Angew Chem Int Ed Engl ; 62(43): e202310158, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37668526

RESUMO

Despite metal-based photosensitizers showing great potential in photodynamic therapy for tumor treatment, the application of the photosensitizers is intrinsically limited by their poor cancer-targeting properties. Herein, we reported a metal-based photosensitizer-bacteria hybrid, Ir-HEcN, via covalent labeling of an iridium(III) photosensitizer to the surface of genetically engineered bacteria. Due to its intrinsic self-propelled motility and hypoxia tropism, Ir-HEcN selectively targets and penetrates deeply into tumor tissues. Importantly, Ir-HEcN is capable of inducing pyroptosis and immunogenic cell death of tumor cells under irradiation, thereby remarkably evoking anti-tumor innate and adaptive immune responses in vivo and leading to the regression of solid tumors via combinational photodynamic therapy and immunotherapy. To the best of our knowledge, Ir-HEcN is the first metal complex decorated bacteria for enhanced photodynamic immunotherapy.

13.
Hum Mutat ; 43(12): 2141-2152, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36208099

RESUMO

ADAMTSL4 variants are one of the common causes of congenital ectopia lentis (EL), reported ocular comorbidities of which include iris anomalies, cataract, and glaucoma. However, a genotype-phenotype correlation has not been established. Potentially pathogenic ADAMTSL4 variants were screened from a Chinese cohort of congenital EL using panel-based next-generation sequencing followed by multiple bioinformatics analyses. The genotype-phenotype correlation was assessed via a systematic review of ADAMTSL4 variants within our data and those from the literature. A total of 12 variants of ADAMTSL4, including seven frameshift variants, one nonsense variant, two splicing variants, and two missense variants, were found in nine probands. Combing genetic and clinical information from 72 probands in the literature revealed 37 ADAMTSL4 variants known to cause EL, and the ethnic difference was prominent. The lens was inclined to dislocate inferior temporally (22, 27.16%), while the pupil was always located oppositely (9, 81.82%). Several anterior segments anomalies were identified, including ectopia pupillae (15, 18.52%), persistent pupillary membrane (9, 11.10%), poor pupil dilation (4, 30.8%), cataract (13, 24.10%), and glaucoma (8, 13.33%). Genotype-phenotype analysis revealed that truncation variants had higher risks of combined iris anomalies, including either ectopia pupillae or a persistent pupillary membrane (p = 0.007). The data from this study not only extend our knowledge of the ADAMTSL4 variant spectrum but also suggest that deleterious variants of ADAMTSL4 might be associated with severe ocular phenotypes.


Assuntos
Catarata , Ectopia do Cristalino , Glaucoma , Humanos , População do Leste Asiático , Linhagem , Proteínas ADAMTS/genética , Mutação , Ectopia do Cristalino/genética , Ectopia do Cristalino/patologia , Catarata/genética
14.
Mol Vis ; 28: 70-82, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693421

RESUMO

Purpose: Glutaredoxin 1 (Grx1) is a key antioxidant protein that catalyzes disulfide redox reactions. In this study, we investigated the expression and protective effect of Grx1 against oxidative stress in nuclear cataracts. Methods: Human anterior capsule membrane samples were obtained from the eyes of cataract patients (experimental group) and non-cataractous (control group) donors. The levels of Grx1 protein and mRNA expression were investigated. The human lens epithelial (HLE) cell line SRA 01/04 was transfected with Grx1-containing plasmid or Grx1 small interfering RNA, and cultured under H2O2 treatment, mimicking oxidative stress conditions. Cell counts, clone formation, cell apoptosis, cell cycle, and levels of oxidized glutathione disulfide and cellular reactive oxygen species (ROS) were evaluated and quantified. Results: Protein and mRNA transcript levels of Grx1 were significantly lower in the human anterior capsule membrane of the age-related nuclear (ARN) cataract group than in the control group. Grx1 overexpression protected HLE cells from H2O2-induced oxidative damage, including alleviating G1 phase arrest, promoting cell proliferation, reducing cell apoptosis, and decreasing intracellular ROS generation. Furthermore, extracellular-signal-regulated kinase (ERK) phosphorylation in the human anterior capsule membrane of ARN patients was higher in the experimental group than in the control group. Grx1 overexpression reduced the levels of oxidized glutathione disulfide and the phosphorylation of ERK. The administration of an ERK phosphorylation inhibitor, PD98059, induced antioxidant effects in Grx1-silenced cells. Conclusions: Grx1 expression is downregulated in the human anterior capsule membrane of ARN patients, accompanied by an increase in ERK phosphorylation. Thus, Grx1 can protect HLE cells against oxidative stress.


Assuntos
Catarata , Cristalino , Antioxidantes/farmacologia , Apoptose , Catarata/genética , Catarata/metabolismo , Células Epiteliais/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Dissulfeto de Glutationa/metabolismo , Dissulfeto de Glutationa/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Cristalino/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Mol Vis ; 28: 317-330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338667

RESUMO

Purpose: To clarify the effect of a previously identified single nucleotide polymorphism (SNP; rs76740365 G>A) in the exon-3 of the alpha A-crystallin (CRYAA) gene on the properties of CRYAA and to investigate its function in human lens epithelial cells (HLECs). Methods: The human recombinant wild-type and mutant CRYAA (E156K) were constructed, and the molecular weight was measured by mass spectrometry. The structural changes induced by E156K mutation were analyzed by UV circular dichroism spectra and intrinsic tryptophan fluorescence and were predicted using Schrödinger software. The chaperone-like ability of wild-type and E156K mutant CRYAA was invested against the heat-induced aggregation of ßL-crystallin and the DTT-induced aggregation of insulin. HLECs expressing wild-type and mutated CRYAA were subjected to quantitative PCR (qPCR) and western blot. Cell apoptosis was determined using flow cytometry analysis, and the expression of apoptosis-related proteins were determined using western blot. Results: The mass spectrometric detection revealed that E156K mutation had no significant effect on the apparent molecular mass of the CRYAA oligomeric complex. Evaluation of the structures of the CRYAA indicated that E156K mutation did not significantly affect the secondary structures, while causing perturbations of the tertiary structure. The mutant CRYAA displayed an increase in chaperone-like activity, which might be related to the increase of the surface hydrophobicity. We also predicted that E156K mutation would induce a change from negatively charged surface to positively charged, which was the possible reason for the disturbance to the surface hydrophobicity. Transfection studies of HLECs revealed that the E156K mutant induced anti-apoptotic function in HLECs, which was possibly associated with the activation of the p-AKT signal pathway and downregulation of Casepase3. Conclusions: Taken together, our results for the first time showed that E156K mutation in CRYAA associated with ARC resulted in enhanced chaperone-like function by inducing its surface hydrophobicity, which was directly related to the activation of its anti-apoptotic function.


Assuntos
Cristalinas , Cadeia A de alfa-Cristalina , alfa-Cristalinas , Humanos , Cristalinas/genética , Cadeia A de alfa-Cristalina/química , alfa-Cristalinas/genética , Polimorfismo de Nucleotídeo Único , Éxons/genética , Células Epiteliais/metabolismo , Chaperonas Moleculares/genética
16.
Macromol Rapid Commun ; 43(16): e2200064, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35218087

RESUMO

Blue-emitting thermally activated delayed fluorescence (TADF) polymers are still in demand for high-efficiency display materials. Through-space charge transfer (TSCT) strategy is promising for keeping color purity of blue-emitting polymers with nonconjugated main chains. It is, however, hard to synthesize copolymers with well-dispersed donors or acceptors utilizing traditional polyethylene backbones via radical polymerization. Herein, two series of blue-emitting polysiloxane with TADF properties, random and order-controlled copolysiloxanes, are successfully designed and synthesized and their photophysical properties are investigated and compared in detail. All of them display short prompt and delay fluorescence lifetimes and a very fast reverse intersystem crossing (RISC) rate of 107 s-1 . Compared with random copolysiloxanes, acceptors are well separated by donors for order-controlled copolysiloxanes, which exhibit the faster RISC processes and the higher photoluminescence quantum yield. Therefore, the order-controlled architecture provides a guide for improving light-emitting efficiency of TSCT-type TADF polymers.

17.
Clin Invest Med ; 45(4): E16-24, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36586103

RESUMO

PURPOSE: To investigate vector and refractive astigmatism changes after superotemporal versus temporal clear corneal incision cataract surgery. METHODS: Patients were diagnosed with age-related cataract with corneal astigmatism < 1.5 diopters (D) and were divided into two groups: superotemporal incision (R group) and temporal incision (L group). Uncorrected visual acuity, manifest refraction, corneal topography, anterior segment optical coherence tomography was performed pre- and six months postoperatively. Total ocular astigmatism, corneal astigmatism, vector of surgically induced corneal astigmatism (SICA), non-corneal ocular residual astigmatism (N-CORA), postoperative intraocular lens decentration and tilt were analyzed.  Results: Thirty-eight subjects were included: 21, R group; 17, L group. After surgery, the N-CORA decreased significantly from 1.17±0.72 D to 0.73±0.47 D in all patients (P=0.001), 1.03±0.52 D to 0.70±0.40 D in the R group (P=0.005) and 1.35±0.90 D to 0.78±0.55 D in the L group (P=0.033). Significant differences between t:he R and L groups were found in the postoperative meridian of anterior corneal astigmatism (75.95±52.50 vs 116.79±47.29; P=0.017), total corneal astigmatism (51.65±42.75 vs 95.20±57.32; P=0.011), J45 change vector of SICA in the anterior cornea (-0.10±0.18 vs 0.00±0.11; P=0.048) and total cornea surface (-0.14±0.17 vs 0.03±0.12; P=0.001).  Conclusion: The N-CORA decreased significantly after cataract surgery. Superotemporal and temporal incisions caused differences in the meridian components of oblique astigmatism in some patients but did not have a significant effect on the magnitude of corneal astigmatism.


Assuntos
Astigmatismo , Catarata , Facoemulsificação , Masculino , Humanos , Astigmatismo/etiologia , Astigmatismo/cirurgia , Facoemulsificação/efeitos adversos , Implante de Lente Intraocular/efeitos adversos , Refração Ocular , Catarata/complicações
18.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012566

RESUMO

During the process of growth and development, plants are prone to various biotic and abiotic stresses. They have evolved a variety of strategies to resist the adverse effects of these stresses. lncRNAs (long non-coding RNAs) are a type of less conserved RNA molecules of more than 200 nt (nucleotides) in length. lncRNAs do not code for any protein, but interact with DNA, RNA, and protein to affect transcriptional, posttranscriptional, and epigenetic modulation events. As a new regulatory element, lncRNAs play a critical role in coping with environmental pressure during plant growth and development. This article presents a comprehensive review on the types of plant lncRNAs, the role and mechanism of lncRNAs at different molecular levels, the coordination between lncRNA and miRNA (microRNA) in plant immune responses, the latest research progress of lncRNAs in plant growth and development, and their response to biotic and abiotic stresses. We conclude with a discussion on future direction for the elaboration of the function and mechanism of lncRNAs.


Assuntos
MicroRNAs , RNA Longo não Codificante , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Desenvolvimento Vegetal/genética , Plantas/genética , Plantas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Estresse Fisiológico/genética
19.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887330

RESUMO

Sugarcane (Saccharum spp.) is an important sugar and energy crop worldwide. As a core regulator of the salicylic acid (SA) signaling pathway, nonexpressor of pathogenesis-related genes 1 (NPR1) plays a significant role in the response of the plant to biotic and abiotic stresses. However, there is currently no report on the NPR1-like gene family in sugarcane. In this study, a total of 18 NPR1-like genes were identified in Saccharum spontaneum and classified into three clades (clade I, II, and III). The cis-elements predicted in the promotors revealed that the sugarcane NPR1-like genes may be involved in various phytohormones and stress responses. RNA sequencing and quantitative real-time PCR analysis demonstrated that NPR1-like genes were differentially expressed in sugarcane tissues and under Sporisorium scitamineum stress. In addition, a novel ShNPR1 gene from Saccharum spp. hybrid ROC22 was isolated by homologous cloning and validated to be a nuclear-localized clade II member. The ShNPR1 gene was constitutively expressed in all the sugarcane tissues, with the highest expression level in the leaf and the lowest in the bud. The expression level of ShNPR1 was decreased by the plant hormones salicylic acid (SA) and abscisic acid (ABA). Additionally, the transient expression showed that the ShNPR1 gene plays a positive role in Nicotiana benthamiana plants' defense response to Ralstonia solanacearum and Fusarium solani var. coeruleum. This study provided comprehensive information for the NPR1-like family in sugarcane, which should be helpful for functional characterization of sugarcane NPR1-like genes in the future.


Assuntos
Saccharum , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharum/genética , Saccharum/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia
20.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361540

RESUMO

Gretchen Hagen3 (GH3), one of the three major auxin-responsive gene families, is involved in hormone homeostasis in vivo by amino acid splicing with the free forms of salicylic acid (SA), jasmonic acid (JA) or indole-3-acetic acid (IAA). Until now, the functions of sugarcane GH3 (SsGH3) family genes in response to biotic stresses have been largely unknown. In this study, we performed a systematic identification of the SsGH3 gene family at the genome level and identified 41 members on 19 chromosomes in the wild sugarcane species, Saccharum spontaneum. Many of these genes were segmentally duplicated and polyploidization was the main contributor to the increased number of SsGH3 members. SsGH3 proteins can be divided into three major categories (SsGH3-I, SsGH3-II, and SsGH3-III) and most SsGH3 genes have relatively conserved exon-intron arrangements and motif compositions. Diverse cis-elements in the promoters of SsGH3 genes were predicted to be essential players in regulating SsGH3 expression patterns. Multiple transcriptome datasets demonstrated that many SsGH3 genes were responsive to biotic and abiotic stresses and possibly had important functions in the stress response. RNA sequencing and RT-qPCR analysis revealed that SsGH3 genes were differentially expressed in sugarcane tissues and under Sporisorium scitamineum stress. In addition, the SsGH3 homolog ScGH3-1 gene (GenBank accession number: OP429459) was cloned from the sugarcane cultivar (Saccharum hybrid) ROC22 and verified to encode a nuclear- and membrane-localization protein. ScGH3-1 was constitutively expressed in all tissues of sugarcane and the highest amount was observed in the stem pith. Interestingly, it was down-regulated after smut pathogen infection but up-regulated after MeJA and SA treatments. Furthermore, transiently overexpressed Nicotiana benthamiana, transduced with the ScGH3-1 gene, showed negative regulation in response to the infection of Ralstonia solanacearum and Fusarium solani var. coeruleum. Finally, a potential model for ScGH3-1-mediated regulation of resistance to pathogen infection in transgenic N. benthamiana plants was proposed. This study lays the foundation for a comprehensive understanding of the sequence characteristics, structural properties, evolutionary relationships, and expression of the GH3 gene family and thus provides a potential genetic resource for sugarcane disease-resistance breeding.


Assuntos
Saccharum , Saccharum/genética , Saccharum/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Ácidos Indolacéticos/metabolismo , Ácido Salicílico/metabolismo , Plantas Geneticamente Modificadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA