Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Cell ; 184(18): 4669-4679.e13, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34390643

RESUMO

Hearing involves two fundamental processes: mechano-electrical transduction and signal amplification. Despite decades of studies, the molecular bases for both remain elusive. Here, we show how prestin, the electromotive molecule of outer hair cells (OHCs) that senses both voltage and membrane tension, mediates signal amplification by coupling conformational changes to alterations in membrane surface area. Cryoelectron microscopy (cryo-EM) structures of human prestin bound with chloride or salicylate at a common "anion site" adopt contracted or expanded states, respectively. Prestin is ensconced within a perimeter of well-ordered lipids, through which it induces dramatic deformation in the membrane and couples protein conformational changes to the bulk membrane. Together with computational studies, we illustrate how the anion site is allosterically coupled to changes in the transmembrane domain cross-sectional area and the surrounding membrane. These studies provide insight into OHC electromotility by providing a structure-based mechanism of the membrane motor prestin.


Assuntos
Fenômenos Eletrofisiológicos , Transportadores de Sulfato/metabolismo , Ânions , Sítios de Ligação , Cloretos/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Domínios Proteicos , Multimerização Proteica , Estabilidade Proteica , Ácido Salicílico/metabolismo , Homologia Estrutural de Proteína , Transportadores de Sulfato/química , Transportadores de Sulfato/ultraestrutura
2.
Genes Dev ; 36(15-16): 887-900, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36167470

RESUMO

The polycomb complex component Bmi1 promotes the maintenance of stem cells in multiple postnatal tissues, partly by negatively regulating the expression of p16Ink4a and p19Arf, tumor suppressors associated with cellular senescence. However, deficiency for p16Ink4a and p19Arf only partially rescues the function of Bmi1-deficient stem cells. We conditionally deleted Bmi1 from adult hematopoietic cells and found that this slowly depleted hematopoietic stem cells (HSCs). Rather than inducing senescence, Bmi1 deficiency increased HSC division. The increased cell division was caused partly by increased Aristaless-related homeobox (ARX) transcription factor expression, which also increased ribosomal RNA expression. However, ARX deficiency did not rescue HSC depletion. Bmi1 deficiency also increased protein synthesis, protein aggregation, and protein ubiquitylation independent of its effects on cell division and p16Ink4a, p19Arf, and ARX expression. Bmi1 thus promotes HSC quiescence by negatively regulating ARX expression and promotes proteostasis by suppressing protein synthesis. This highlights a new connection between the regulation of stem cell maintenance and proteostasis.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Proteostase , Inibidor p16 de Quinase Dependente de Ciclina/genética , Células-Tronco Hematopoéticas , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Agregados Proteicos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Ribossômico/metabolismo
3.
Nature ; 612(7941): 673-678, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450987

RESUMO

Electrochemical saline water electrolysis using renewable energy as input is a highly desirable and sustainable method for the mass production of green hydrogen1-7; however, its practical viability is seriously challenged by insufficient durability because of the electrode side reactions and corrosion issues arising from the complex components of seawater. Although catalyst engineering using polyanion coatings to suppress corrosion by chloride ions or creating highly selective electrocatalysts has been extensively exploited with modest success, it is still far from satisfactory for practical applications8-14. Indirect seawater splitting by using a pre-desalination process can avoid side-reaction and corrosion problems15-21, but it requires additional energy input, making it economically less attractive. In addition, the independent bulky desalination system makes seawater electrolysis systems less flexible in terms of size. Here we propose a direct seawater electrolysis method for hydrogen production that radically addresses the side-reaction and corrosion problems. A demonstration system was stably operated at a current density of 250 milliamperes per square centimetre for over 3,200 hours under practical application conditions without failure. This strategy realizes efficient, size-flexible and scalable direct seawater electrolysis in a way similar to freshwater splitting without a notable increase in operation cost, and has high potential for practical application. Importantly, this configuration and mechanism promises further applications in simultaneous water-based effluent treatment and resource recovery and hydrogen generation in one step.

4.
Nature ; 604(7905): 349-353, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35388219

RESUMO

Mammalian embryogenesis requires rapid growth and proper metabolic regulation1. Midgestation features increasing oxygen and nutrient availability concomitant with fetal organ development2,3. Understanding how metabolism supports development requires approaches to observe metabolism directly in model organisms in utero. Here we used isotope tracing and metabolomics to identify evolving metabolic programmes in the placenta and embryo during midgestation in mice. These tissues differ metabolically throughout midgestation, but we pinpointed gestational days (GD) 10.5-11.5 as a transition period for both placenta and embryo. Isotope tracing revealed differences in carbohydrate metabolism between the tissues and rapid glucose-dependent purine synthesis, especially in the embryo. Glucose's contribution to the tricarboxylic acid (TCA) cycle rises throughout midgestation in the embryo but not in the placenta. By GD12.5, compartmentalized metabolic programmes are apparent within the embryo, including different nutrient contributions to the TCA cycle in different organs. To contextualize developmental anomalies associated with Mendelian metabolic defects, we analysed mice deficient in LIPT1, the enzyme that activates 2-ketoacid dehydrogenases related to the TCA cycle4,5. LIPT1 deficiency suppresses TCA cycle metabolism during the GD10.5-GD11.5 transition, perturbs brain, heart and erythrocyte development and leads to embryonic demise by GD11.5. These data document individualized metabolic programmes in developing organs in utero.


Assuntos
Ciclo do Ácido Cítrico , Desenvolvimento Fetal , Metabolômica , Placenta , Animais , Embrião de Mamíferos/metabolismo , Feminino , Glucose/metabolismo , Mamíferos/metabolismo , Camundongos , Placenta/metabolismo , Gravidez
5.
Nature ; 591(7850): 438-444, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33627868

RESUMO

Stromal cells in adult bone marrow that express leptin receptor (LEPR) are a critical source of growth factors, including stem cell factor (SCF), for the maintenance of haematopoietic stem cells and early restricted progenitors1-6. LEPR+ cells are heterogeneous, including skeletal stem cells and osteogenic and adipogenic progenitors7-12, although few markers have been available to distinguish these subsets or to compare their functions. Here we show that expression of an osteogenic growth factor, osteolectin13,14, distinguishes peri-arteriolar LEPR+ cells poised to undergo osteogenesis from peri-sinusoidal LEPR+ cells poised to undergo adipogenesis (but retaining osteogenic potential). Peri-arteriolar LEPR+osteolectin+ cells are rapidly dividing, short-lived osteogenic progenitors that increase in number after fracture and are depleted during ageing. Deletion of Scf from adult osteolectin+ cells did not affect the maintenance of haematopoietic stem cells or most restricted progenitors but depleted common lymphoid progenitors, impairing lymphopoiesis, bacterial clearance, and survival after acute bacterial infection. Peri-arteriolar osteolectin+ cell maintenance required mechanical stimulation. Voluntary running increased, whereas hindlimb unloading decreased, the frequencies of peri-arteriolar osteolectin+ cells and common lymphoid progenitors. Deletion of the mechanosensitive ion channel PIEZO1 from osteolectin+ cells depleted osteolectin+ cells and common lymphoid progenitors. These results show that a peri-arteriolar niche for osteogenesis and lymphopoiesis in bone marrow is maintained by mechanical stimulation and depleted during ageing.


Assuntos
Arteríolas , Linfopoese , Osteogênese , Nicho de Células-Tronco , Tecido Adiposo/citologia , Envelhecimento , Animais , Células da Medula Óssea/citologia , Osso e Ossos/citologia , Feminino , Fatores de Crescimento de Células Hematopoéticas/metabolismo , Lectinas Tipo C/metabolismo , Linfócitos/citologia , Masculino , Camundongos , Receptores para Leptina/metabolismo , Fator de Células-Tronco , Células Estromais/citologia
6.
Blood ; 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39437548

RESUMO

Ascorbate (vitamin C) limits hematopoietic stem cell (HSC) function and suppresses leukemia development, partly by promoting the function of the Tet2 tumor suppressor. In humans, ascorbate is obtained from the diet while in mice it is synthesized in the liver. In this study, we show that deletion of the Slc23a2 ascorbate transporter from hematopoietic cells depleted ascorbate to undetectable levels in HSCs and MPPs without altering plasma ascorbate levels. Slc23a2 deficiency increased HSC reconstituting potential and self-renewal potential upon transplantation into irradiated mice. Slc23a2 deficiency also increased the reconstituting and self-renewal potentials of multipotent hematopoietic progenitors (MPPs), conferring the ability to long-term reconstitute irradiated mice. Slc23a2-deficient HSCs and MPPs divided much less frequently than control HSCs and MPPs. Increased self-renewal and reconstituting potential were observed particularly in quiescent Slc23a2-deficient HSCs and MPPs. The effect of Slc23a2 deficiency on MPP self-renewal was not mediated by reduced Tet2 function. Ascorbate thus regulates quiescence and restricts self-renewal potential in HSCs and MPPs such that ascorbate deficiency confers MPPs with long-term self-renewal potential.

7.
Blood ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39378586

RESUMO

Cellular metabolism is highly dynamic during hematopoiesis, yet the regulatory networks that maintain metabolic homeostasis during differentiation are incompletely understood. Here, we have studied the grave immunodeficiency syndrome reticular dysgenesis caused by loss of mitochondrial adenylate kinase 2 (AK2) function. By coupling single-cell transcriptomics in reticular dysgenesis patient samples with a CRISPR model of this disorder in primary human hematopoietic stem cells, we found that the consequences of AK2 deficiency for the hematopoietic system are contingent on the effective engagement of metabolic checkpoints. In hematopoietic stem and progenitor cells, including early granulocyte precursors, AK2 deficiency reduced mechanistic target of rapamycin (mTOR) signaling and anabolic pathway activation. This conserved nutrient homeostasis and maintained cell survival and proliferation. In contrast, during late-stage granulopoiesis, metabolic checkpoints were ineffective, leading to a paradoxical upregulation of mTOR activity and energy-consuming anabolic pathways such as ribonucleoprotein synthesis in AK2-deficient cells. This caused nucleotide imbalance, including highly elevated AMP and IMP levels, the depletion of essential substrates such as NAD+ and aspartate, and ultimately resulted in proliferation arrest and demise of the granulocyte lineage. Our findings suggest that even severe metabolic defects can be tolerated with the help of metabolic checkpoints but that the failure of such checkpoints in differentiated cells results in a catastrophic loss of homeostasis.

8.
Nature ; 585(7823): 113-118, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32814895

RESUMO

Cancer cells, including melanoma cells, often metastasize regionally through the lymphatic system before metastasizing systemically through the blood1-4; however, the reason for this is unclear. Here we show that melanoma cells in lymph experience less oxidative stress and form more metastases than melanoma cells in blood. Immunocompromised mice with melanomas derived from patients, and immunocompetent mice with mouse melanomas, had more melanoma cells per microlitre in tumour-draining lymph than in tumour-draining blood. Cells that metastasized through blood, but not those that metastasized through lymph, became dependent on the ferroptosis inhibitor GPX4. Cells that were pretreated with chemical ferroptosis inhibitors formed more metastases than untreated cells after intravenous, but not intralymphatic, injection. We observed multiple differences between lymph fluid and blood plasma that may contribute to decreased oxidative stress and ferroptosis in lymph, including higher levels of glutathione and oleic acid and less free iron in lymph. Oleic acid protected melanoma cells from ferroptosis in an Acsl3-dependent manner and increased their capacity to form metastatic tumours. Melanoma cells from lymph nodes were more resistant to ferroptosis and formed more metastases after intravenous injection than did melanoma cells from subcutaneous tumours. Exposure to the lymphatic environment thus protects melanoma cells from ferroptosis and increases their ability to survive during subsequent metastasis through the blood.


Assuntos
Ferroptose , Linfa/metabolismo , Melanoma/patologia , Metástase Neoplásica/patologia , Animais , Sobrevivência Celular , Coenzima A Ligases/metabolismo , Feminino , Ferroptose/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Ferro/metabolismo , Masculino , Melanoma/sangue , Melanoma/metabolismo , Camundongos , Metástase Neoplásica/tratamento farmacológico , Ácido Oleico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Análise de Componente Principal
9.
Nature ; 577(7788): 115-120, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31853067

RESUMO

Metastasis requires cancer cells to undergo metabolic changes that are poorly understood1-3. Here we show that metabolic differences among melanoma cells confer differences in metastatic potential as a result of differences in the function of the MCT1 transporter. In vivo isotope tracing analysis in patient-derived xenografts revealed differences in nutrient handling between efficiently and inefficiently metastasizing melanomas, with circulating lactate being a more prominent source of tumour lactate in efficient metastasizers. Efficient metastasizers had higher levels of MCT1, and inhibition of MCT1 reduced lactate uptake. MCT1 inhibition had little effect on the growth of primary subcutaneous tumours, but resulted in depletion of circulating melanoma cells and reduced the metastatic disease burden in patient-derived xenografts and in mouse melanomas. In addition, inhibition of MCT1 suppressed the oxidative pentose phosphate pathway and increased levels of reactive oxygen species. Antioxidants blocked the effects of MCT1 inhibition on metastasis. MCT1high and MCT1-/low cells from the same melanomas had similar capacities to form subcutaneous tumours, but MCT1high cells formed more metastases after intravenous injection. Metabolic differences among cancer cells thus confer differences in metastatic potential as metastasizing cells depend on MCT1 to manage oxidative stress.


Assuntos
Melanoma/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Melanoma/genética , Melanoma/secundário , Camundongos , Transportadores de Ácidos Monocarboxílicos/genética , Estresse Oxidativo , Simportadores/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Proc Natl Acad Sci U S A ; 120(29): e2304602120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37436958

RESUMO

The serotonin transporter (SERT) is a member of the SLC6 neurotransmitter transporter family that mediates serotonin reuptake at presynaptic nerve terminals. SERT is the target of both therapeutic antidepressant drugs and psychostimulant substances such as cocaine and methamphetamines, which are small molecules that perturb normal serotonergic transmission by interfering with serotonin transport. Despite decades of studies, important functional aspects of SERT such as the oligomerization state of native SERT and its interactions with potential proteins remain unresolved. Here, we develop methods to isolate SERT from porcine brain (pSERT) using a mild, nonionic detergent, utilize fluorescence-detection size-exclusion chromatography to investigate its oligomerization state and interactions with other proteins, and employ single-particle cryo-electron microscopy to elucidate the structures of pSERT in complexes with methamphetamine or cocaine, providing structural insights into psychostimulant recognition and accompanying pSERT conformations. Methamphetamine and cocaine both bind to the central site, stabilizing the transporter in an outward open conformation. We also identify densities attributable to multiple cholesterol or cholesteryl hemisuccinate (CHS) molecules, as well as to a detergent molecule bound to the pSERT allosteric site. Under our conditions of isolation, we find that pSERT is best described as a monomeric entity, isolated without interacting proteins, and is ensconced by multiple cholesterol or CHS molecules.


Assuntos
Estimulantes do Sistema Nervoso Central , Cocaína , Metanfetamina , Animais , Suínos , Proteínas da Membrana Plasmática de Transporte de Serotonina , Microscopia Crioeletrônica , Detergentes , Serotonina , Cocaína/farmacologia , Metanfetamina/farmacologia
11.
Proc Natl Acad Sci U S A ; 120(22): e2220159120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216542

RESUMO

Osteolectin is a recently identified osteogenic growth factor that binds to Integrin α11 (encoded by Itga11), promoting Wnt pathway activation and osteogenic differentiation by bone marrow stromal cells. While Osteolectin and Itga11 are not required for the formation of the skeleton during fetal development, they are required for the maintenance of adult bone mass. Genome-wide association studies in humans reported a single-nucleotide variant (rs182722517) 16 kb downstream of Osteolectin associated with reduced height and plasma Osteolectin levels. In this study, we tested whether Osteolectin promotes bone elongation and found that Osteolectin-deficient mice have shorter bones than those of sex-matched littermate controls. Integrin α11 deficiency in limb mesenchymal progenitors or chondrocytes reduced growth plate chondrocyte proliferation and bone elongation. Recombinant Osteolectin injections increased femur length in juvenile mice. Human bone marrow stromal cells edited to contain the rs182722517 variant produced less Osteolectin and underwent less osteogenic differentiation than that of control cells. These studies identify Osteolectin/Integrin α11 as a regulator of bone elongation and body length in mice and humans.


Assuntos
Condrócitos , Osteogênese , Adulto , Camundongos , Animais , Humanos , Condrócitos/metabolismo , Osteogênese/fisiologia , Lâmina de Crescimento , Estudo de Associação Genômica Ampla , Osso e Ossos , Diferenciação Celular , Integrinas/metabolismo , Proliferação de Células
12.
Nature ; 569(7754): 141-145, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31019304

RESUMO

The serotonin transporter (SERT) regulates neurotransmitter homeostasis through the sodium- and chloride-dependent recycling of serotonin into presynaptic neurons1-3. Major depression and anxiety disorders are treated using selective serotonin reuptake inhibitors-small molecules that competitively block substrate binding and thereby prolong neurotransmitter action2,4. The dopamine and noradrenaline transporters, together with SERT, are members of the neurotransmitter sodium symporter (NSS) family. The transport activities of NSSs can be inhibited or modulated by cocaine and amphetamines2,3, and genetic variants of NSSs are associated with several neuropsychiatric disorders including attention deficit hyperactivity disorder, autism and bipolar disorder2,5. Studies of bacterial NSS homologues-including LeuT-have shown how their transmembrane helices (TMs) undergo conformational changes during the transport cycle, exposing a central binding site to either side of the membrane1,6-12. However, the conformational changes associated with transport in NSSs remain unknown. To elucidate structure-based mechanisms for transport in SERT we investigated its complexes with ibogaine, a hallucinogenic natural product with psychoactive and anti-addictive properties13,14. Notably, ibogaine is a non-competitive inhibitor of transport but displays competitive binding towards selective serotonin reuptake inhibitors15,16. Here we report cryo-electron microscopy structures of SERT-ibogaine complexes captured in outward-open, occluded and inward-open conformations. Ibogaine binds to the central binding site, and closure of the extracellular gate largely involves movements of TMs 1b and 6a. Opening of the intracellular gate involves a hinge-like movement of TM1a and the partial unwinding of TM5, which together create a permeation pathway that enables substrate and ion diffusion to the cytoplasm. These structures define the structural rearrangements that occur from the outward-open to inward-open conformations, and provide insight into the mechanism of neurotransmitter transport and ibogaine inhibition.


Assuntos
Microscopia Crioeletrônica , Ibogaína/química , Ibogaína/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/ultraestrutura , Serotonina/metabolismo , Sítios de Ligação/efeitos dos fármacos , Ligação Competitiva , Transporte Biológico/efeitos dos fármacos , Alucinógenos/química , Alucinógenos/farmacologia , Humanos , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Inibidores Seletivos de Recaptação de Serotonina/química , Relação Estrutura-Atividade
13.
Mol Cell Proteomics ; 22(8): 100588, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295717

RESUMO

Membrane proteins play critical roles at the cell surface and their misfunction is a hallmark of many human diseases. A precise evaluation of the plasma membrane proteome is therefore essential for cell biology and for discovering novel biomarkers and therapeutic targets. However, the low abundance of this proteome relative to soluble proteins makes it difficult to characterize, even with the most advanced proteomics technologies. Here, we apply the peptidisc membrane mimetic to purify the cell membrane proteome. Using the HeLa cell line as a reference, we capture 500 different integral membrane proteins, with half annotated to the plasma membrane. Notably, the peptidisc library is enriched with several ABC, SLC, GPCR, CD, and cell adhesion molecules that generally exist at low to very low copy numbers in the cell. We extend the method to compare two pancreatic cell lines, Panc-1 and hPSC. Here we observe a striking difference in the relative abundance of the cell surface cancer markers L1CAM, ANPEP, ITGB4, and CD70. We also identify two novel SLC transporters, SLC30A1 and SLC12A7, that are highly present in the Panc-1 cell only. The peptidisc library thus emerges as an effective way to survey and compare the membrane proteome of mammalian cells. Furthermore, since the method stabilizes membrane proteins in a water-soluble state, members of the library, here SLC12A7, can be specifically isolated.


Assuntos
Proteoma , Simportadores , Animais , Humanos , Células HeLa , Proteoma/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Mamíferos/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35110412

RESUMO

The pentose phosphate pathway is a major source of NADPH for oxidative stress resistance in cancer cells but there is limited insight into its role in metastasis, when some cancer cells experience high levels of oxidative stress. To address this, we mutated the substrate binding site of glucose 6-phosphate dehydrogenase (G6PD), which catalyzes the first step of the pentose phosphate pathway, in patient-derived melanomas. G6PD mutant melanomas had significantly decreased G6PD enzymatic activity and depletion of intermediates in the oxidative pentose phosphate pathway. Reduced G6PD function had little effect on the formation of primary subcutaneous tumors, but when these tumors spontaneously metastasized, the frequency of circulating melanoma cells in the blood and metastatic disease burden were significantly reduced. G6PD mutant melanomas exhibited increased levels of reactive oxygen species, decreased NADPH levels, and depleted glutathione as compared to control melanomas. G6PD mutant melanomas compensated for this increase in oxidative stress by increasing malic enzyme activity and glutamine consumption. This generated a new metabolic vulnerability as G6PD mutant melanomas were more dependent upon glutaminase than control melanomas, both for oxidative stress management and anaplerosis. The oxidative pentose phosphate pathway, malic enzyme, and glutaminolysis thus confer layered protection against oxidative stress during metastasis.


Assuntos
Glucosefosfato Desidrogenase/metabolismo , Glutamina/metabolismo , Melanoma/metabolismo , Estresse Oxidativo/fisiologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos NOD , NADP/metabolismo , Oxirredução , Via de Pentose Fosfato/fisiologia , Espécies Reativas de Oxigênio/metabolismo
15.
Genes Dev ; 31(11): 1134-1146, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28698301

RESUMO

We and others showed previously that PR domain-containing 16 (Prdm16) is a transcriptional regulator required for stem cell function in multiple fetal and neonatal tissues, including the nervous system. However, Prdm16 germline knockout mice died neonatally, preventing us from testing whether Prdm16 is also required for adult stem cell function. Here we demonstrate that Prdm16 is required for neural stem cell maintenance and neurogenesis in the adult lateral ventricle subventricular zone and dentate gyrus. We also discovered that Prdm16 is required for the formation of ciliated ependymal cells in the lateral ventricle. Conditional Prdm16 deletion during fetal development using Nestin-Cre prevented the formation of ependymal cells, disrupting cerebrospinal fluid flow and causing hydrocephalus. Postnatal Prdm16 deletion using Nestin-CreERT2 did not cause hydrocephalus or prevent the formation of ciliated ependymal cells but caused defects in their differentiation. Prdm16 was required in neural stem/progenitor cells for the expression of Foxj1, a transcription factor that promotes ependymal cell differentiation. These studies show that Prdm16 is required for adult neural stem cell maintenance and neurogenesis as well as the formation of ependymal cells.


Assuntos
Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Ependimogliais/citologia , Neurogênese/genética , Prosencéfalo/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Giro Denteado/citologia , Fatores de Transcrição Forkhead/genética , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Ventrículos Laterais/citologia , Ventrículos Laterais/fisiopatologia , Camundongos , Células-Tronco Neurais/citologia
16.
Trends Biochem Sci ; 45(3): 202-216, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31813734

RESUMO

Membrane transporters are key gatekeeper proteins at cellular membranes that closely control the traffic of materials. Their function relies on structural rearrangements of varying degrees that facilitate substrate translocation across the membrane. Characterizing these functionally important molecular events at a microscopic level is key to our understanding of membrane transport, yet challenging to achieve experimentally. Recent advances in simulation technology and computing power have rendered molecular dynamics (MD) simulation a powerful biophysical tool to investigate a wide range of dynamical events spanning multiple spatial and temporal scales. Here, we review recent studies of diverse membrane transporters using computational methods, with an emphasis on highlighting the technical challenges, key lessons learned, and new opportunities to illuminate transporter structure and function.


Assuntos
Microscopia Crioeletrônica , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Dinâmica Molecular , Transporte Biológico , Cristalografia por Raios X , Proteínas de Membrana Transportadoras/química , Conformação Proteica
17.
J Proteome Res ; 23(2): 857-867, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38232390

RESUMO

Membrane proteins, particularly those on the cell surface, play pivotal roles in diverse physiological processes, and their dysfunction is linked to a broad spectrum of diseases. Despite being crucial biomarkers and therapeutic drug targets, their low abundance and hydrophobic nature pose challenges in isolation and quantification, especially when extracted from tissues and organs. To overcome these hurdles, we developed the membrane-mimicking peptidisc, enabling the isolation of the membrane proteome in a water-soluble library conducive to swift identification through liquid chromatography with tandem mass spectrometry. This study applies the method across five mice organs, capturing between 200 and 450 plasma membrane proteins in each case. More than just membrane protein identification, the peptidisc is used to estimate the relative abundance across organs, linking cell-surface protein molecular functions to organ biological roles, thereby contributing to the ongoing discourse on organ specificity. This contribution holds substantial potential for unveiling new avenues in the exploration of biomarkers and downstream applications involving knowledge of the organ cell-surface proteome.


Assuntos
Proteoma , Proteômica , Camundongos , Animais , Proteoma/análise , Especificidade de Órgãos , Proteômica/métodos , Proteínas de Membrana/metabolismo , Membrana Celular/química , Biomarcadores/análise
18.
J Am Chem Soc ; 146(37): 25764-25779, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39110478

RESUMO

Photoresponsive ruthenium(II) complexes have recently emerged as a promising tool for synergistic photodynamic therapy and chemotherapy in oncology, as well as for antimicrobial applications. However, the limited penetration power of photons prevents the treatment of deep-seated lesions. In this study, we introduce a sonoresponsive ruthenium complex capable of generating superoxide anion (O2•-) via type I process and initiating a ligand fracture process upon ultrasound triggering. Attaching hydroxyflavone (HF) as an "electron reservoir" to the octahedral-polypyridyl-ruthenium complex resulted in decreased highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps and triplet-state metal to ligand charge transfer (3MLCT) state energy (0.89 eV). This modification enhanced the generation of O2•- under therapeutic ultrasound irradiation at a frequency of 1 MHz. The produced O2•- rapidly induced an intramolecular cascade reaction and HF ligand fracture. As a proof-of-concept, we engineered the Ru complex into a metallopolymer platform (PolyRuHF), which could be activated by low-power ultrasound (1.5 W cm-2, 1.0 MHz, 50% duty cycle) within a centimeter range of tissue. This activation led to O2•- generation and the release of cytotoxic ruthenium complexes. Consequently, PolyRuHF induced cellular apoptosis and ferroptosis by causing mitochondrial dysfunction and excessive toxic lipid peroxidation. Furthermore, PolyRuHF effectively inhibited subcutaneous and orthotopic breast tumors and prevented lung metastasis by downregulating metastasis-related proteins in mice. This study introduces the first sonoresponsive ruthenium complex for sonodynamic therapy/sonoactivated chemotherapy, offering new avenues for deep tumor treatment.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Superóxidos , Superóxidos/metabolismo , Superóxidos/química , Rutênio/química , Rutênio/farmacologia , Animais , Camundongos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Ligantes , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Humanos , Linhagem Celular Tumoral , Feminino , Apoptose/efeitos dos fármacos
19.
Small ; : e2406130, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39392032

RESUMO

Small-sized metals generally exhibit unusual deformation responses subjected to cyclic loading, since their limited volume cannot effectively accommodate micro-sized dislocation patterns typically found in their bulk counterparts. Here, the cyclic behaviors in Cu nanopillars with different configurations are investigated using in situ transmission electron microscopy fatigue test. Dislocation tangles formed in single- and twinned-crystal nanopillars as a result of cycling-induced operations of multiple slip systems and further unpinning and absorption of pinned dislocations. While, nanopillars configured with low-angle grain boundary (LAGB) underwent the degradation and eventual decomposition of the LAGB due to the cycling-induced emission of grain boundary dislocations, which resulted in high-density mobile dislocations to withstand the cyclic loading. These findings contribute to a systematic and comprehensive understanding of the micro-mechanics of dislocation-related phenomena in the cyclic response of nanoscale metals.

20.
Biochem Soc Trans ; 52(3): 1253-1263, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666604

RESUMO

Measuring the expression levels of membrane proteins (MPs) is crucial for understanding cell differentiation and tissue specificity, defining disease characteristics, identifying biomarkers, and developing therapeutics. While bottom-up proteomics addresses the need for accurately surveying the membrane proteome, the lower abundance and hydrophobic nature of MPs pose challenges in sample preparation. As MPs normally reside in the lipid bilayer, conventional extraction methods rely on detergents, introducing here a paradox - detergents prevent aggregation and facilitate protein processing, but themselves become contaminants that interfere with downstream analytical applications. Various detergent removal methods exist to mitigate this issue, including filter-aided sample preparation, SP3, suspension trapping, and membrane mimetics. This review delves into the fundamentals of each strategy, applications, merits, and limitations, providing insights into their effectiveness in MP research.


Assuntos
Detergentes , Proteínas de Membrana , Proteômica , Detergentes/química , Proteômica/métodos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Humanos , Proteoma , Animais , Membrana Celular/metabolismo , Membrana Celular/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA