Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Org Biomol Chem ; 13(14): 4179-82, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25758755

RESUMO

The example of palladium-catalyzed intermolecular cyclization for the synthesis of various diarylfurans in which one of the aromatic rings originates from the phenolic part of the starting ester and the other one from PhI(OAc)2 has been reported. The reaction is carried out through two steps: the rearrangement of palladium-associated iodonium ylides to form o-iodo diaryl ether and then palladium catalyzed intramolecular direct arylation. This reaction can tolerate a variety of functional groups and is alternative or complementary to the previous methods for the synthesis of diarylfurans.


Assuntos
Acetatos/química , Acetatos/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Furanos/química , Furanos/síntese química , Halogênios/química , Paládio/química , Catálise , Técnicas de Química Sintética , Ésteres
2.
J Org Chem ; 79(2): 803-8, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24364763

RESUMO

An aminolysis reaction between various aryl esters and inert tertiary amines by C-O and C-N bond activations has been developed for the selective synthesis of a broad scope of tertiary amides under neutral and mild conditions. The mechanism may undergo the two key steps of oxidative addition of acyl C-O bond in parent ester and C-N bond cleavage of tertiary amine via an iminium-type intermediate.

3.
J Org Chem ; 79(14): 6715-9, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24935132

RESUMO

Catalyzed by supported gold nanoparticles, an aminolysis reaction between various aryl esters and inert tertiary amines by C-O and C-N bond activations has been developed for the selective synthesis of tertiary amides. Comparison studies indicated that the gold nanoparticles could perform energy-efficient green catalysis at room temperature, whereas Pd(OAc)2 could not.


Assuntos
Amidas/síntese química , Aminas/química , Ésteres/química , Ouro/química , Nanopartículas Metálicas/química , Amidas/química , Catálise , Estrutura Molecular
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 27(10): 2134-8, 2007 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-18306814

RESUMO

Ni3V2O8 catalyst was prepared by oxalate co-precipitation method with microwave heating in this paper. In order to study the relationship between the catalytic performance and the surface species, the catalyst was characterized by XRD, BET, H2-TPR, XPS, TEM and conductivity measurement. The surface property of Ni3V2O8 was studied by XPS and the catalytic performance of the oxidative dehydrogenation of propane to propylene was also investigated. The results of XRD showedthat pure Ni3V2O8 with nice structure was obtained. TEM experiments results demonstrated that the prepared Ni3V2O8 catalyst at 700 degrees C calcination showed uniform particle with the mean particle size of 30 nm. The surface area of the catalyst was 8.623 m2 x g(-1). The diagram of the relationship between electrical conductivity and oxygen partial pressure of Ni3V2O8 showed dsigma/dPO2, >0, implying that Ni3V2O8 catalyst was a p-type semiconductor. H2-TPR results showed that only one unsymmetrical reduction peak appeared at 663.5 degreesC within 300-900 degrees C region over Ni3V2O8 catalyst and no obvious shoulder peak was observed. It could also be found that the ratio of non complete reduction oxygen species was about 33.59% (O(-) 27.55%, O2(2-) 6.04%) from the O(1s) XPS result and more V4+ species existed on the Ni3V2O8 catalyst surface. The TPR and XPS results illustrated that the transformation of the lattice oxygen to non-complete reduction oxygen in NiV2O8 catalyst might promote the oxidation-reduction reaction between different valence vanadium and promoted the oxygen vacancy formation. This then led to abundant non-complete reduction oxygen O(-) and V4+ species formation on the surface of Ni3V2O8 catalyst. The active result of oxidative dehydrogenation of propane to propylene showed that the 60.02% propylene selectivity could be reached at 18.60% propane conversion. Compared with the reported results over the coexistent NiO and Ni3V2O8 system from the literature, pure Ni3V2O8 catalyst system in this present paper showed higher propylene selectivity than the coexistent NiO and Ni3V2O8 system under the same propane conversion condition, suggesting that the performance of propane to propene is correlated to the oxidation-reduction of V4+ / V5+ couple and non complete reduction oxygen species (O(-) or O2(2-)). This result further illustrated that NiV2O8 was active phase for oxidative dehydrogenation of propane to propylene. Combining the active and characterization results, it was found that catalytic activity was correlated to the surface non-complete reduction O(-) and V4+ species, which was beneficial to improving the propylene selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA