RESUMO
Hard carbons (HCs) are a significantly promising anode material for alkali metal-ion batteries. However, long calcination time and much energy consumption are required for the traditional fabrication way, resulting in an obstacle for high-throughput synthesis and structure regulation of HCs. Herein, we report an emerging sintering method to rapidly fabricate HCs from different carbon precursors at an ultrafast heating rate (300 to 500 °C min-1) under one minute by a multifield-regulated spark plasma sintering (SPS) technology. HCs prepared via the SPS possess significantly fewer defects, lower porosity, and less oxygen content than those pyrolyzed in traditional sintering ways. The molecular dynamics simulations are employed to elucidate the mechanism of the remarkably accelerated pyrolysis from the quickly increased carbon sp2 content under the multifield effect. As a proof of concept, the SPS-derived HC exhibits an improved initial Coulombic efficiency (88.9%), a larger reversible capacity (299.4 mAhâ g-1), and remarkably enhanced rate capacities (136.6 mAhâ g-1 at 5 Aâ g-1) than anode materials derived from a traditional route for Na-ion batteries.
RESUMO
Carbonaceous materials exhibit promising application in electrochemical energy storage especially for hollow or porous structure due to the fascinating and outstanding properties. Although there has been achieved good progress, controllable synthesis of hollow or porous carbons with uniform morphology by a green and easy way is still a challenge. Herein, a new artful and green approach is designed to controllably prepare hollow porous carbon materials with the assistance of boron oxide vitreum under a relatively low temperature of 500 °C. The vitreous B2 O3 provides a flowing carbonization environment and acts as etching agent accompanying with boron doping. By this general strategy, hollow and porous carbon architectures with various morphology of spheres and hollow polyhedrons are successfully fabricated by metal organic framework (MOF) precursors. Furthermore, such hollow carbon materials exhibit considerably excellent Na+ /K+ storage properties through enhanced capacitive behavior due to due to the highly porous structure and large surface area. It is notable that hollow carbon spheres display nearly 90% initial Coulombic efficiency, outstanding rate capability with 130 mAh g-1 at 30 A g-1 and long cycling life for sodium ion storage.
RESUMO
With the miniaturization of multilayer ceramic capacitors (MLCCs) and the increase of the electric field on a single dielectric layer, dielectric constant DC-bias stability and reliability have gradually aroused attention in the advanced electronics industry. In this study, MLCCs with outstanding DC-bias stability and reliability were prepared by using dielectric ceramic optimization and electrode optimization strategies. The effect of the Dy-Y doping concentration on the microstructure, dielectric properties, and reliability of BaTiO3-based ceramics was investigated. The shell ratio and effective shell doping concentration of the core-shell structure in ceramic grains play important roles in defects and electrical performances. The ceramic with appropriate doping contents shows a dielectric constant of 1800 and a dielectric constant change rate of -17% under a DC field of 4 kV/mm, which was fabricated into prototype MLCCs with different Ni electrodes. MLCCs exhibit outstanding DC-bias stability with a -28% degradation in the dielectric constant under a DC field of 4 kV/mm while possessing a dielectric constant of 2300 and satisfying the EIA X7S specification. Additionally, it was discovered that MLCCs prepared by using fine-size Ni particle electrodes have low electrode roughness and high interfacial Schottky barriers, resulting in better reliability. This study provides promising candidate materials and theoretical references for high-end and high DC-bias stability MLCCs.
RESUMO
A multiscale regulation strategy has been demonstrated for synthetic energy storage enhancement in a tetragonal tungsten bronze structure ferroelectric. Grain refining and second-phase precipitation (perovskite phase) are introduced in the BaSrTiNb2-xTaxO9 ceramics by regulating the composition and sintering process. Disordered polarization and distribution, chemical inhomogeneity, and insulating boundary layers are achieved to provide the fundamental structural origin of the relaxation characteristic, high breakdown strength, and superior energy storage performance. Thus, an ultrahigh energy storage density of 12.2 J cm-3 with an low energy consumption was achieved at an electric field of 950 kV cm-1. This is the highest known energy storage performance in tetragonal tungsten bronze-based ferroelectric. Notably, this ceramic shows remarkable stability over frequency, temperature, and cycling electric fields. This work brings new material candidates and structure design for developing of energy storage capacitors apart from the predominant perovskite ferroelectric ceramics.
RESUMO
The development of suitable host materials for the reversible storage of divalent ions such as Mg2+ is still a big challenge and its progress to date has been slow compared to that of monovalent Li+ or Na+. Herein, we present the study of layered sodium trititanate (Na2Ti3O7) and sodium hexatitanate (Na2Ti6O13) nanowires as anode materials for rechargeable Mg-ion batteries. It is found for the first time that the structural evolution from layered Na2Ti3O7 to Na2Ti6O13 with a more condensate three-dimensional microporous structure enables remarkably enhanced Mg-ion storage performance. The Na2Ti6O13 electrode can achieve a large initial discharge and charge capacity of 165.8 and 147.7 mA h g-1 at 10 mA g-1 with a record high initial coulombic efficiency up to 89.1%. Ex situ XRD, Raman measurements and EDX mapping were used to investigate the electrochemical reaction mechanism. It is suggested that the irreversible structure change and the formation of insoluble NaCl with high yield and large particles when Na+ is replaced by inserted Mg2+ for the Na2Ti3O7 electrode could be ascribed to the rapid decline in capacity. By contrast, the Na2Ti6O13 electrode exhibits good structure stability during the Mg-ion insertion/extraction process, leading to good rate performance and cycling stability.
RESUMO
Heteroatom-doping is a promising strategy to tuning the microstructure of carbon material toward improved electrochemical storage performance. However, it is a big challenge to control the doping sites for heteroatom-doping and the rational design of doping is urgently needed. Herein, S doping sites and the influence of interlayer spacing for two kinds of hard carbon, perfect structure and vacancy defect structure, are explored by the first-principles method. S prefers doping in the interlayer for the former with interlayer distance of 3.997 Å, while S is doped on the carbon layer for the latter with interlayer distance of 3.695 Å. More importantly, one step molten salts method is developed as a universal synthetic strategy to fabricate hard carbon with tunable microstructure. It is demonstrated by the experimental results that S-doping hard carbon with fewer pores exhibits a larger interlayer spacing than that of porous carbon, agreeing well with the theoretical prediction. Furthermore, the S-doping carbon with larger interlayer distance and fewer pores exhibits remarkably large reversible capacity, excellent rate performance, and long-term cycling stability for Na-ion storage. A stable and reversible capacity of ≈200 mAh g-1 is steadily kept even after 4000 cycles at 1 A g-1 .