Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(23): 9215-9, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23690571

RESUMO

Plasmonic nanoclusters, an ordered assembly of coupled metallic nanoparticles, support unique spectral features known as Fano resonances due to the coupling between their subradiant and superradiant plasmon modes. Within the Fano resonance, absorption is significantly enhanced, giving rise to highly localized, intense near fields with the potential to enhance nonlinear optical processes. Here, we report a structure supporting the coherent oscillation of two distinct Fano resonances within an individual plasmonic nanocluster. We show how this coherence enhances the optical four-wave mixing process in comparison with other double-resonant plasmonic clusters that lack this property. A model that explains the observed four-wave mixing features is proposed, which is generally applicable to any third-order process in plasmonic nanostructures. With a larger effective susceptibility χ(3) relative to existing nonlinear optical materials, this coherent double-resonant nanocluster offers a strategy for designing high-performance third-order nonlinear optical media.


Assuntos
Nanopartículas Metálicas/química , Modelos Químicos , Dispositivos Ópticos , Óptica e Fotônica/métodos , Simulação por Computador
2.
Nano Lett ; 14(6): 3628-33, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24798451

RESUMO

Noble metal nanowires are excellent candidates as subwavelength optical components in miniaturized devices due to their ability to support the propagation of surface plasmon polaritons (SPPs). Nanoscale data transfer based on SPP propagation at optical frequencies has the advantage of larger bandwidths but also suffers from larger losses due to strong mode confinement. To overcome losses, SPP gain has been realized, but so far only for weakly confined SPPs in metal films and stripes. Here we report the demonstration of gain for subwavelength SPPs that were strongly confined in chemically prepared silver nanowires (mode area = λ(2)/40) using a dye-doped polymer film as the optical gain medium. Under continuous wave excitation at 514 nm, we measured a gain coefficient of 270 cm(-1) for SPPs at 633 nm, resulting in partial SPP loss compensation of 14%. This achievement for strongly confined SPPs represents a major step forward toward the realization of nanoscale plasmonic amplifiers and lasers.

3.
Nano Lett ; 13(12): 6256-61, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205882

RESUMO

Plasmon propagation in thin plasmonic waveguides is strongly damped, making it difficult to study with diffraction-limited optics. Here we directly characterize plasmon propagation in gold nanobelts with incoherent light. The data indicate a short average propagation length of 0.94 µm but also reveal a weakly excited antisymmetric mode that has a propagation length greater than 10 µm with strong confinement of 2400 nm(2). These results demonstrate that high confinement and long propagation length can be achieved with thin plasmonic structures.


Assuntos
Ouro/química , Nanoestruturas/química , Nanotecnologia , Luz , Óptica e Fotônica , Ressonância de Plasmônio de Superfície
4.
Nano Lett ; 13(4): 1736-42, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23517407

RESUMO

When an Au nanoparticle in a liquid medium is illuminated with resonant light of sufficient intensity, a nanometer scale envelope of vapor-a "nanobubble"-surrounding the particle, is formed. This is the nanoscale onset of the well-known process of liquid boiling, occurring at a single nanoparticle nucleation site, resulting from the photothermal response of the nanoparticle. Here we examine bubble formation at an individual metallic nanoparticle in detail. Incipient nanobubble formation is observed by monitoring the plasmon resonance shift of an individual, illuminated Au nanoparticle, when its local environment changes from liquid to vapor. The temperature on the nanoparticle surface is monitored during this process, where a dramatic temperature jump is observed as the nanoscale vapor layer thermally decouples the nanoparticle from the surrounding liquid. By increasing the intensity of the incident light or decreasing the interparticle separation, we observe the formation of micrometer-sized bubbles resulting from the coalescence of nanoparticle-"bound" vapor envelopes. These studies provide the first direct and quantitative analysis of the evolution of light-induced steam generation by nanoparticles from the nanoscale to the macroscale, a process that is of fundamental interest for a growing number of applications.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia , Temperatura Alta , Imersão , Luz , Espalhamento de Radiação
5.
Nano Lett ; 11(11): 5034-7, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21973047

RESUMO

Plasmonic nanowires with sub-100-nm rectangular cross sections were found to exhibit a strong transverse plasmon peak at visible wavelengths. By correlating atomic force microscopy measurements of individual nanobelts with their dark-field scattering spectra, it is seen that the transverse peak tunes with cross-sectional aspect ratio. Simulations revealed that the scattering plasmonic modes are transverse antisymmetric excitations across the nanobelt width. Unlike larger diameter silver nanowires, these nanobelts exhibit sharp, tunable plasmon resonances similar to those of nanoparticles.


Assuntos
Ouro/química , Modelos Químicos , Nanoestruturas/química , Ressonância de Plasmônio de Superfície/métodos , Titânio/química , Simulação por Computador , Luz , Teste de Materiais , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Espalhamento de Radiação
6.
Nat Commun ; 5: 4424, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-25020075

RESUMO

Plasmonic nanostructures are of particular interest as substrates for the spectroscopic detection and identification of individual molecules. Single-molecule sensitivity Raman detection has been achieved by combining resonant molecular excitation with large electromagnetic field enhancements experienced by a molecule associated with an interparticle junction. Detection of molecules with extremely small Raman cross-sections (~10(-30) cm(2) sr(-1)), however, has remained elusive. Here we show that coherent anti-Stokes Raman spectroscopy (CARS), a nonlinear spectroscopy of great utility and potential for molecular sensing, can be used to obtain single-molecule detection sensitivity, by exploiting the unique light harvesting properties of plasmonic Fano resonances. The CARS signal is enhanced by ~11 orders of magnitude relative to spontaneous Raman scattering, enabling the detection of single molecules, which is verified using a statistically rigorous bi-analyte method. This approach combines unprecedented single-molecule spectral sensitivity with plasmonic substrates that can be fabricated using top-down lithographic strategies.

7.
ACS Nano ; 8(1): 572-80, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24308802

RESUMO

We investigated the effects of cross sectional geometry on surface plasmon polariton propagation in gold nanowires (NWs) using bleach-imaged plasmon propagation and electromagnetic simulations. Chemically synthesized NWs have pentagonally twinned crystal structures, but recent advances in synthesis have made it possible to amplify this pentagonal shape to yield NWs with a five-pointed-star cross section and sharp end tips. We found experimentally that NWs with a five-pointed-star cross section, referred to as SNWs, had a shorter propagation length for surface plasmon polaritons at 785 nm, but a higher effective incoupling efficiency compared to smooth NWs with a pentagonal cross section, labeled as PNWs. Electromagnetic simulations revealed that the electric fields were localized at the sharp ridges of the SNWs, leading to higher absorptive losses and hence shorter propagation lengths compared to PNWs. On the other hand, scattering losses were found to be relatively uncorrelated with cross sectional geometry, but were strongly dependent on the plasmon mode excited. Our results provide insight into the shape-dependent waveguiding properties of chemically synthesized metal NWs and the mode-dependent loss mechanisms that govern surface plasmon polariton propagation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA