Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Plant Physiol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935533

RESUMO

Emerging evidence indicates that fatty acid (FA) metabolic pathways regulate host immunity to vertebrate viruses. However, information on FA signaling in plant virus infection remains elusive. In this study, we demonstrate the importance of fatty acid desaturase (FAD), an enzyme that catalyzes the rate-limiting step in the conversion of saturated FAs into unsaturated FAs, during infection by a plant RNA virus. We previously found that the rare Kua-ubiquitin conjugating enzyme (Kua-UEV1) fusion protein FAD4 from Nicotiana benthamiana (NbFAD4) was down-regulated upon turnip mosaic virus (TuMV) infection. We now demonstrate that NbFAD4 is unstable and is degraded as TuMV infection progresses. NbFAD4 is required for TuMV replication, as it interacts with TuMV replication protein 6K2 and colocalizes with viral replication complexes. Moreover, NbFAD4 overexpression dampened the accumulation of immunity-related phytohormones and FA metabolites, and its catalytic activity appears to be crucial for TuMV infection. Finally, a yeast two-hybrid library screen identified the vacuolar H+-ATPase component ATP6V0C as involved in NbFAD4 degradation and further suppression of TuMV infection. This study reveals the intricate role of FAD4 in plant virus infection, and shed lights on a new mechanism by which a V-ATPase is involved in plant antiviral defense.

2.
PLoS Pathog ; 18(1): e1010257, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35073383

RESUMO

Accumulated experimental evidence has shown that viruses recruit the host intracellular machinery to establish infection. It has recently been shown that the potyvirus Turnip mosaic virus (TuMV) transits through the late endosome (LE) for viral genome replication, but it is still largely unknown how the viral replication vesicles labelled by the TuMV membrane protein 6K2 target LE. To further understand the underlying mechanism, we studied the involvement of the vacuolar sorting receptor (VSR) family proteins from Arabidopsis in this process. We now report the identification of VSR4 as a new host factor required for TuMV infection. VSR4 interacted specifically with TuMV 6K2 and was required for targeting of 6K2 to enlarged LE. Following overexpression of VSR4 or its recycling-defective mutant that accumulates in the early endosome (EE), 6K2 did not employ the conventional VSR-mediated EE to LE pathway, but targeted enlarged LE directly from cis-Golgi and viral replication was enhanced. In addition, VSR4 can be N-glycosylated and this is required for its stability and for monitoring 6K2 trafficking to enlarged LE. A non-glycosylated VSR4 mutant enhanced the dissociation of 6K2 from cis-Golgi, leading to the formation of punctate bodies that targeted enlarged LE and to more robust viral replication than with glycosylated VSR4. Finally, TuMV hijacks N-glycosylated VSR4 and protects VSR4 from degradation via the autophagy pathway to assist infection. Taken together, our results have identified a host factor VSR4 required for viral replication vesicles to target endosomes for optimal viral infection and shed new light on the role of N-glycosylation of a host factor in regulating viral infection.


Assuntos
Endossomos/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Potyvirus/patogenicidade , Proteínas de Transporte Vesicular/metabolismo , Compartimentos de Replicação Viral/metabolismo , Humanos , Doenças das Plantas/microbiologia , Replicação Viral/fisiologia
3.
Respir Res ; 25(1): 263, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956592

RESUMO

BACKGROUND: Aberrant activation of macrophages is associated with pathogenesis of acute lung injury (ALI). However, the potential pathogenesis has not been explored. OBJECTIVES: We aimed to identify whether histone deacetylase (HDAC) 10 is involved in lipopolysaccharide (LPS)-exposed ALI and reveal the underlying pathogenesis by which it promotes lung inflammation in LPS-exposed ALI via modifying P62 with deacetylation. METHODS: We constructed an ALI mice model stimulated with LPS to determine the positive effect of Hdac10 deficiency. Moreover, we cultured murine alveolar macrophage cell line (MH-S cells) and primary bone marrow-derived macrophages (BMDMs) to explore the pro-inflammatory activity and mechanism of HDAC10 after LPS challenge. RESULTS: HDAC10 expression was increased both in mice lung tissues and macrophage cell lines and promoted inflammatory cytokines production exposed to LPS. Hdac10 deficiency inhibited autophagy and inflammatory response after LPS stimulation. In vivo, Hdac10fl/fl-LysMCre mice considerably attenuated lung inflammation and inflammatory cytokines release exposed to LPS. Mechanistically, HDAC10 interacts with P62 and mediates P62 deacetylation at lysine 165 (K165), by which it promotes P62 expression and increases inflammatory cytokines production. Importantly, we identified that Salvianolic acid B (SAB), an HDAC10 inhibitor, reduces lung inflammatory response in LPS-stimulated ALI. CONCLUSION: These results uncover a previously unknown role for HDAC10 in regulating P62 deacetylation and aggravating lung inflammation in LPS-induced ALI, implicating that targeting HDAC10 is an effective therapy for LPS-exposed ALI.


Assuntos
Lesão Pulmonar Aguda , Histona Desacetilases , Lipopolissacarídeos , Lisina , Camundongos Endogâmicos C57BL , Animais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/prevenção & controle , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Lipopolissacarídeos/toxicidade , Camundongos , Acetilação , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/deficiência , Lisina/metabolismo , Camundongos Knockout , Masculino , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Células Mieloides/metabolismo
4.
Health Expect ; 27(2): e14019, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558230

RESUMO

BACKGROUND: Due to the diversity and high sensitivity of the treatment, there were difficulties and uncertainties in the breast cancer surgical decision-making process. We aimed to describe the patient's decision-making behaviour and shared decision-making (SDM)-related barriers and facilitators in breast cancer surgical treatment. METHODS: We searched eight databases for qualitative studies and mixed-method studies about breast cancer patients' surgical decision-making process from inception to March 2021. The quality of the studies was critically appraised by two researchers independently. We used a 'best fit framework approach' to analyze and synthesize the evidence. RESULTS: Twenty-eight qualitative studies and three mixed-method studies were included in this study. Four themes and 10 subthemes were extracted: (a) struggling with various considerations, (b) actual decision-making behaviours, (c) SDM not routinely implemented and (d) multiple facilitators and barriers to SDM. CONCLUSIONS: Patients had various considerations of breast surgery and SDM was not routinely implemented. There was a discrepancy between information exchange behaviours, value clarification, decision support utilization and SDM due to cognitive and behavioural biases. When individuals made surgical decisions, their behaviours were affected by individual-level and system-level factors. Therefore, healthcare providers and other stakeholders should constantly improve communication skills and collaboration, and emphasize the importance of decision support, so as to embed SDM into routine practice. PATIENT AND PUBLIC CONTRIBUTION: This systematic review was conducted as part of a wider research entitled: Breast cancer patients' actual participation roles in surgical decision making: a mixed method research. The results of this project helped us to better analyze and generalize patients' views.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/cirurgia , Tomada de Decisão Compartilhada , Tomada de Decisões , Participação do Paciente , Pesquisa Qualitativa
5.
Plant Dis ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568794

RESUMO

Green-stem forsythia (Forsythia viridissima), also known as golden bell, is cultivated widely in China as an early spring flowering shrub. In July 2020, yellow or white vein clearing symptoms on leaves were observed in approximate 15% golden bell plants along a landscape river in Ningbo city, Zhejiang province, China. Symptomatic leaves from six different plants were collected and pooled. Total RNA was extracted from about 200 mg pooled sample using TRIzol Reagent (Invitrogen, Carlsbad, USA) and used for high-throughput sequencing (HTS). The cDNA library was constructed using a TruSeq RNA Sample Preparation Kit (Illumina) and an Illumina NovaSeq 6000 platform was utilized to yield 150 nt paired-end reads. CLC Genomic Workbench 11 (QIAGEN) with default parameters were used for data analysis. A total of 41,604,174 paired-end reads were obtained, and 156,853 contigs (16 - 26,665 nt) were generated de novo and compared with sequences in the NCBI nt and nr database using BLASTn and BLASTx, respectively. A total of 197,277 reads were mapped to the citrus leaf blotch virus (CLBV; genus Citrivirus, family Betaflexiviridae) genome with an average coverage of 3191×. A contig of 8783 nt (excluding the poly(A) tail) was aligned to CLBV isolate Vib (accession No. OP751940) by BLASTn with the highest nt sequence identity of 99.7% and 99% query coverage, suggesting that the samples were infected with CLBV (Myung-Hwi Kim et al. 2023). No other virus was detected by this analysis. Subsequently, leaves of the six plants collected above, three plants with mild chlorotic symptoms and three plants without obvious symptoms were tested separately by RT-PCR and all were positive for CLBV. Sap from multiple symptomatic F. viridissima leaves was mechanically inoculated to Nicotiana benthamiana, N. tabacum and Datura stramonium in sextuplicate, but after two months, none of the inoculated plants had obvious symptoms and all of them tested negative for CLBV using RT-PCR. To determine the genome sequence of CLBV present in F. viridissima, a single sample from one plant was selected for genome validtion. The contig sequence was confirmed by Sanger sequencing of RT-PCR products amplified using CLBV-specific primers, and the 5' terminal sequence of the virus was determined using a commercial SUPERSWITCH RACE cDNA Synthesis Kit (Tiosbio, Beijing, China). The complete genomic sequence of CLBV isolated from F. viridissima was 8787 nts long, excluding the poly(A) tail, has the expected three predicted ORFs and was deposited in the GenBank database (accession no. OR766026). Phylogenetic analysis of different CLBV genome sequences from fruit trees and other hosts in GenBank using MEGA11 showed that the golden bell isolate was most closely related to isolate Vib (OP751940) from Viburnum lentago in South Korea, with which it was almost identical (99.7% complete nt sequence identity and >99% aa sequence identity in each of the three ORFs). Ten viruses have been previously reported from Forsythia spp. (Kaminska, M. 1985; Lee et al. 1997), but this is the first report of CLBV in this host. CLBV mainly infects citrus, kiwifruit and apple causing mosaic, chlorosis or yellow vein clearing symptoms, however, bud union disorder was observed in 'Nagami' kumquat infected by CLBV, which caused serious production losses (Cao et al. 2017; Li et al. 2018; Liu et al. 2019; Galipienso et al. 2001). Therefore, further investigation is needed to assess if F. viridissima can be an intermediate host to transfer CLBV to other crops.

6.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612822

RESUMO

Tomato brown rugose fruit virus (ToBRFV) is a newly-emerging tobamovirus which was first reported on tomatoes in Israel and Jordan, and which has now spread rapidly in Asia, Europe, North America, and Africa. ToBRFV can overcome the resistance to other tobamoviruses conferred by tomato Tm-1, Tm-2, and Tm-22 genes, and it has seriously affected global crop production. The rapid and comprehensive transcription reprogramming of host plant cells is the key to resisting virus attack, but there have been no studies of the transcriptome changes induced by ToBRFV in tomatoes. Here, we made a comparative transcriptome analysis between tomato leaves infected with ToBRFV for 21 days and those mock-inoculated as controls. A total of 522 differentially expressed genes were identified after ToBRFV infection, of which 270 were up-regulated and 252 were down-regulated. Functional analysis showed that DEGs were involved in biological processes such as response to wounding, response to stress, protein folding, and defense response. Ten DEGs were selected and verified by qRT-PCR, confirming the reliability of the high-throughput sequencing data. These results provide candidate genes or signal pathways for the response of tomato leaves to ToBRFV infection.


Assuntos
Solanum lycopersicum , Tobamovirus , Viroses , Solanum lycopersicum/genética , Frutas , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica , Transcriptoma
7.
PLoS Pathog ; 17(9): e1009963, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34587220

RESUMO

Autophagy is induced by viral infection and has antiviral functions in plants, but the underlying mechanism is poorly understood. We previously identified a viral small interfering RNA (vsiRNA) derived from rice stripe virus (RSV) RNA4 that contributes to the leaf-twisting and stunting symptoms caused by this virus by targeting the host eukaryotic translation initiation factor 4A (eIF4A) mRNA for silencing. In addition, autophagy plays antiviral roles by degrading RSV p3 protein, a suppressor of RNA silencing. Here, we demonstrate that eIF4A acts as a negative regulator of autophagy in Nicotiana benthamiana. Silencing of NbeIF4A activated autophagy and inhibited RSV infection by facilitating autophagic degradation of p3. Further analysis showed that NbeIF4A interacts with NbATG5 and interferes with its interaction with ATG12. Overexpression of NbeIF4A suppressed NbATG5-activated autophagy. Moreover, expression of vsiRNA-4A, which targets NbeIF4A mRNA for cleavage, induced autophagy by silencing NbeIF4A. Finally, we demonstrate that eIF4A from rice, the natural host of RSV, also interacts with OsATG5 and suppresses OsATG5-activated autophagy, pointing to the conserved function of eIF4A as a negative regulator of antiviral autophagy. Taken together, these results reveal that eIF4A negatively regulates antiviral autophagy by interacting with ATG5 and that its mRNA is recognized by a virus-derived siRNA, resulting in its silencing, which induces autophagy against viral infection.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia/fisiologia , Fatores de Iniciação em Eucariotos/metabolismo , Imunidade Vegetal/fisiologia , RNA Interferente Pequeno/metabolismo , Proteínas de Plantas/metabolismo , Tenuivirus , Nicotiana/virologia
8.
PLoS Pathog ; 17(12): e1010108, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34852025

RESUMO

Jasmonic acid (JA) is a crucial hormone in plant antiviral immunity. Increasing evidence shows that viruses counter this host immune response by interfering with JA biosynthesis and signaling. However, the mechanism by which viruses affect JA biosynthesis is still largely unexplored. Here, we show that a highly conserved chloroplast protein cpSRP54 was downregulated in Nicotiana benthamiana infected by turnip mosaic virus (TuMV). Its silencing facilitated TuMV infection. Furthermore, cpSRP54 interacted with allene oxide cyclases (AOCs), key JA biosynthesis enzymes, and was responsible for delivering AOCs onto the thylakoid membrane (TM). Interestingly, TuMV P1 protein interacted with cpSRP54 and mediated its degradation via the 26S proteosome and autophagy pathways. The results suggest that TuMV has evolved a strategy, through the inhibition of cpSRP54 and its delivery of AOCs to the TM, to suppress JA biosynthesis and enhance viral infection. Interaction between cpSRP54 and AOCs was shown to be conserved in Arabidopsis and rice, while cpSRP54 also interacted with, and was degraded by, pepper mild mottle virus (PMMoV) 126 kDa protein and potato virus X (PVX) p25 protein, indicating that suppression of cpSRP54 may be a common mechanism used by viruses to counter the antiviral JA pathway.


Assuntos
Proteínas de Cloroplastos/metabolismo , Ciclopentanos/metabolismo , Oxirredutases Intramoleculares/metabolismo , Oxilipinas/metabolismo , Doenças das Plantas/virologia , Potyvirus/metabolismo , Tilacoides/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal , Viroses/virologia
9.
BMC Cancer ; 23(1): 597, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380982

RESUMO

BACKGROUND: The nutritional status of cancer patients is a crucial factor in determining their prognosis. The objective of this study was to investigate and compare the prognostic value of pretreatment nutrition-related indicators in elderly esophageal squamous cell carcinoma (ESCC). Risk stratification was performed according to independent risk factors and a new nutritional prognostic index was constructed. METHODS: We retrospectively reviewed 460 older locally advanced ESCC patients receiving definitive chemoradiotherapy (dCRT) or radiotherapy (dRT). This study included five pre- therapeutic nutrition-related indicators. The optimal cut-off values for these indices were calculated from the Receiver Operating Curve (ROC). Univariate and multivariate COX analyses were employed to determine the association between each indicator and clinical outcomes. The predictive ability of each independently nutrition-related prognostic indicator was assessed using the time-dependent ROC (time-ROC) and C-index. RESULTS: Multivariate analyses indicated that the geriatric nutrition risk index (GNRI), body mass index (BMI), the controlling nutritional status (CONUT) score, and platelet-albumin ratio (PAR) could independently predict overall survival (OS) and progression-free survival (PFS) in elderly patients with ESCC (all p < 0.05), except for prognostic nutritional index (PNI). Based on four independently nutrition-related prognostic indicators, we developed pre-therapeutic nutritional prognostic score (PTNPS) and new nutritional prognostic index (NNPI). No-risk (PTNPS = 0-1 point), moderate-risk (PTNPS = 2 points), and high-risk (PTNPS = 3-4 points) groups had 5-year OS rates of 42.3%, 22.9%, and 8.8%, respectively (p < 0.001), and 5-year PFS rates of 44.4%, 26.5%, and 11.3%, respectively (p < 0.001). The Kaplan-Meier curves showed that the mortality of elderly ESCC patients in the high-risk group was higher than that in the low-risk group according to the NNPI. Analysis of time-AUC and C-index revealed that the NNPI (C-index: 0.663) had the greatest predictive power on the prognosis in older ESCC patients. CONCLUSIONS: In elderly ESCC patients, the GNRI, BMI, CONUT score, and PAR can be used as objective assessment measures for the risk of nutrition-related death. Compared to the other four indexes, the NNPI has the greatest prognostic value for prognosis, and elderly patients with a higher nutritional risk have a poor prognosis, which is helpful in guiding early clinical nutrition intervention.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Idoso , Humanos , Prognóstico , Carcinoma de Células Escamosas do Esôfago/terapia , Neoplasias Esofágicas/terapia , Estudos Retrospectivos , Quimiorradioterapia , Fatores de Risco , Albuminas
10.
Arch Virol ; 168(12): 292, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966521

RESUMO

A novel virus infecting a Paris polyphylla var. yunnanensis plant, tentatively named "Paris polyphylla chlorotic mottle virus" (PpCMV), was discovered in the city of Lijiang, Yunnan Province, China. Its genome consists of 6384 nucleotides (nt), excluding the 3'-terminal poly(A) tail, and contains two open reading frames: ORF1 and ORF2. ORF1 is 6150 nt in length, encoding a large 2050-aa polyprotein with at least two conserved regions encoding a replication-associated protein and a coat protein, the latter of which is located at the 3' end of ORF1. ORF2, consisting of 1185 nt, is located within ORF1 but has a different reading frame. It encodes a 394-aa-long putative movement protein. Phylogenetic analysis based on amino acid sequences revealed that the newly discovered virus exhibited the closest relationship to Hobart betaflexivirus 1 and rhodiola betaflexivirus 1, both of which belong to the genus Capillovirus, sharing 48.8% and 36.5% amino acid sequence identity, respectively, in the structural protein. This is the first report of the complete genome sequence of PpCMV in China.


Assuntos
Ascomicetos , Flexiviridae , Liliaceae , Melanthiaceae , China , Filogenia , Sequência de Aminoácidos , Nucleotídeos , RNA Mensageiro
11.
Arch Virol ; 168(11): 281, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889350

RESUMO

A novel mitovirus was detected in taro (Colocasia esculenta) growing in Ningbo, China. The complete genome sequence of Colocasia esculenta associated mitovirus 1 (CeaMV1) was determined by next-generation sequencing combined with RT-PCR and RACE. The genome is 2921 nucleotides long and contains a single ORF encoding a putative RNA-dependent RNA polymerase. Homology searches and phylogenetic analysis suggested that CeaMV1 is a member of a new species in the genus Duamitovirus. This is the first report of a member of the family Mitoviridae associated with taro.


Assuntos
Colocasia , Vírus de RNA , Filogenia , Genoma Viral , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/genética
12.
Arch Virol ; 168(6): 167, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227509

RESUMO

The complete genome of a new virus belonging to the family Betaflexiviridae was identified in garlic and sequenced by next-generation sequencing and reverse transcription PCR. The complete RNA genome (GenBank accession number OP021693) is 8191 nucleotides in length, excluding the 3' poly(A) tail, and contains five open reading frames (ORFs). These open reading frames encode the viral replicase, triple gene block, and coat protein, and the genome organization is typical of members of the subfamily Quinvirinae. The virus has been tentatively named "garlic yellow curl virus" (GYCV). Phylogenetic analysis suggested that it represents an independent evolutionary lineage in the subfamily, clustering with the currently unclassified garlic yellow mosaic associated virus (GYMaV) and peony betaflexivirus 1 (PeV1). Differences between the phylogenies inferred for the replicase and coat protein indicate that the new virus does not belong to any established genus of the family Betaflexiviridae. This is the first report of GYCV in China.


Assuntos
Flexiviridae , Alho , Alho/genética , Filogenia , Genoma Viral , Flexiviridae/genética , RNA , RNA Mensageiro , Fases de Leitura Aberta , RNA Viral/genética , Doenças das Plantas
13.
Arch Virol ; 168(5): 137, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043037

RESUMO

The complete genomic sequence of a waikavirus from Chinese hackberry in Zhejiang province, China, named "hackberry virus A" (HVA), was determined using high-throughput sequencing (HTS) combined with reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) PCR. The bicistronic genomic RNA of HVA was found to consist of 12,691 nucleotides (nt), excluding the 3'-terminal poly(A) tail, and to encode a large polyprotein of 3783 amino acids (aa) and an additional 10.3-kDa protein. The aa sequences of the Pro-Pol and the CP regions of this virus share 39.8-44.2% and 25.5-36.4% identity, respectively, with currently known waikaviruses. These values are significantly below the current species demarcation threshold (< 75% and < 80% aa identity for the CP and Pro-Pol region, respectively) for the family Secoviridae, indicating that HVA represents a new species in the genus Waikavirus. This is the first report of a virus infecting Chinese hackberry.


Assuntos
Waikavirus , Waikavirus/genética , Sequência de Bases , Genoma Viral , Filogenia , Doenças das Plantas , RNA Viral/genética
14.
Int J Clin Oncol ; 28(4): 550-564, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36735115

RESUMO

OBJECTIVE: The purpose of this study was to compare the clinical outcomes and toxicities between induction chemotherapy (IC) + chemo-radiotherapy (CRT) and CRT alone in patients with locally advanced esophageal squamous cell carcinoma (ESCC), to explore the appropriate thoracic radiotherapy (TRT) timing after IC and to identify prognostic factors. METHODS: 450 ESCC patients were included from September 2011 to December 2020, 238 of whom received IC/CRT. Propensity score matching was performed to balance potential confounders between the two groups. Multivariate Cox regression analysis was used to identify the independent prognostic factors. RESULTS: Patients who received IC/CRT experienced improved overall survival (OS) (38.5 vs. 28.8 months) and progression-free survival (PFS) (41.0 vs. 22.0 months) before matching, with similar results after matching. In the IC/CRT group, early TRT had more favorable survival than late TRT both matching before and after. In subgroup analysis, early TRT combination concurrent chemotherapy had better OS and PFS than late TRT combination concurrent chemotherapy. In addition, early TRT had better survival benefits regardless of the N stage. Notably, the IC/CRT group and early TRT group had manageable toxicities reaction compared with CRT alone group and the late TRT group. The nomogram was developed to predict the OS and PFS based on multivariate analysis results. The C-index was 0.743 and 0.722, respectively. CONCLUSION: IC/CRT and early TRT could yield satisfactory clinical outcomes and controllable toxicities in locally advanced ESCC. The IC plus early concurrent CRT might be a promising treatment strategy for improving further survival in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/radioterapia , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/radioterapia , Quimioterapia de Indução/efeitos adversos , Quimiorradioterapia/efeitos adversos , Estudos Retrospectivos
15.
PLoS Pathog ; 16(8): e1008780, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32866188

RESUMO

Ubiquitin like protein 5 (UBL5) interacts with other proteins to regulate their function but differs from ubiquitin and other UBLs because it does not form covalent conjugates. Ubiquitin and most UBLs mediate the degradation of target proteins through the 26S proteasome but it is not known if UBL5 can also do that. Here we found that the UBL5s of rice and Nicotiana benthamiana interacted with rice stripe virus (RSV) p3 protein. Silencing of NbUBL5s in N. benthamiana facilitated RSV infection, while UBL5 overexpression conferred resistance to RSV in both N. benthamiana and rice. Further analysis showed that NbUBL5.1 impaired the function of p3 as a suppressor of silencing by degrading it through the 26S proteasome. NbUBL5.1 and OsUBL5 interacted with RPN10 and RPN13, the receptors of ubiquitin in the 26S proteasome. Furthermore, silencing of NbRPN10 or NbRPN13 compromised the degradation of p3 mediated by NbUBL5.1. Together, the results suggest that UBL5 mediates the degradation of RSV p3 protein through the 26S proteasome, a previously unreported plant defense strategy against RSV infection.


Assuntos
Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Repressoras/metabolismo , Tenuivirus/metabolismo , Ubiquitinas/metabolismo , Proteínas Virais/metabolismo , Proteínas de Plantas/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Repressoras/genética , Tenuivirus/genética , Nicotiana/genética , Ubiquitinas/genética , Proteínas Virais/genética
16.
Arch Virol ; 167(11): 2391-2393, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35925395

RESUMO

The complete genome sequence of a virus from lily (Lilium lancifolium Thunb.) growing in Huoshan County, Anhui Province, China, was determined. The whole genome consists of 9558 nucleotides, excluding the poly(A) tail, and encodes a 3061-amino-acid polyprotein (GenBank number ON365558) typical of potyviruses. This is the first complete genome sequence of iris potyvirus B (IPB), for which only a partial sequence from Iris domestica was reported previously. Comparative analysis of this genome sequence with those of closely related potyviruses identified nine cleavage sites and the conserved motifs typical of potyviruses. The complete polyprotein ORF shares 73.6% nucleotide and 81.6% amino acid sequence identity with that of iris potyvirus A (IPA, GenBank number MH898493). Phylogenetic analysis showed that IPB is related to IPA and clusters in a group with lily yellow mosaic virus (LYMV). This is the first report of IPB infecting lily plants.


Assuntos
Lilium , Potyvirus , China , Genoma Viral , Nucleotídeos , Filogenia , Doenças das Plantas , Poliproteínas/genética , Potyvirus/genética , RNA Mensageiro , RNA Viral/genética
17.
Arch Virol ; 167(7): 1583-1587, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35567696

RESUMO

Chilli ringspot virus (ChiRSV; genus Potyvirus) was one of several viruses previously detected in pepper samples with severe yellowing and curling symptoms growing in Wenshan, Yunan province, China. We now report the full-length sequence of ChiRSV-YN/Wenshan (MZ269480), which has 88.5-98.9% nucleotide sequence identity to other published ChiRSV isolates. A full-length cDNA infectious clone was constructed. This cDNA and an eGFP-tagged clone were infectious, leading to systemic symptoms in both Nicotiana benthamiana and Capsicum spp. Recombinant clones containing the P1 protein coding region of other ChiRSV isolates differed in their pathogenicity. Single infection by ChiRSV caused mild mosaic or leaf crinkling in Capsicum frutescens L. and Capsicum annuum L.


Assuntos
Capsicum , Potyvirus , China , Células Clonais , DNA Complementar/genética , Genoma Viral , Doenças das Plantas , Potyvirus/genética
18.
Plant Dis ; 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35442709

RESUMO

Yam bean (Pachyrhizus erosus), a high-yielding leguminous root crop with good nutritional value, is widely cultivated in southern China. In 2020, P. erosus (cv. Mumashan) plants exhibiting irregular yellow leaves and malformed seed pods (Supplementary Fig S1) were observed at Ningbo city, Zhejiang Province, China. To determine the causal agent(s) of the disease, symptomatic leaves (n=4) were collected for electron microscopy negative staining. Virus particles with a length of about 700nm, similar to viruses in the genus Potyvirus, were observed via transmission electron microscope (TEM), suggesting the presence a potyvirus(es). To further confirm which potyvirus(es) infected yam bean, total RNA was extracted from leaf samples of a total of six plants, including four symptomatic plants and two asymptomatic plants using TRIzol reagent (Invitrogen Carlsbad, CA, USA) according to the manufacturer's instructions. RNA was reverse-transcribed into cDNA with M4-T as the 3'-anchoring primer by ReverTra Ace® kit (Toyobo, Japan). Sprimer/M4 Potyviridae specific primers (Chen et al., 2001) were used for PCR analysis. A ~1,700-bp-long product was amplified from four symptomatic plants using KOD FX enzyme (Toyobo, Japan). No such band was amplified from the two asymptomatic plants. The PCR product (~1.7kb) amplified from a single symptomatic plant was ligated into the pEASY®-Blunt Zero vector (TransGen Bio, Beijing, China) and sequenced (Sangon Bio, Shanghai, China). The amplicon showed 99% nucleotide sequence identities with bean common mosaic virus (BCMV) isolate NKY021 (KJ807819). Subsequently, the complete nucleotide sequences of this BCMV isolate (referred as BCMV-NB) was amplified by overlapping RT-PCR and rapid amplification of cDNA ends with primers (Supplementary Table S1) designed from the sequence of BCMV isolate NKY021. The BCMV-NB full genome (Accession No. OL871237) consists of 10,053 nucleotides excluding the poly(A) tail and contains a large open reading frame encoding a polyprotein of 3222 amino acids. BLASTn analysis showed that BCMV-NB shared a sequence identity of 96.4% with BCMV isolate HZZB011 (KJ807815). Phylogenetic tree generated by Neighbour-Joining method revealing the BCMV-NB isolate was grouped together with Chinese isolates from Glycine max (Supplementary Fig S1). To test the infectivity of BCMV-NB, virus-free yam bean (cv. Mumashan) and Nicotiana benthamiana seedlings were mechanically inoculated with sap extracted from the symptomatic leaves of a BCMV-NB-infected yam bean plant. The inoculated yam bean plants developed typical BCMV mosaic and chlorotic symptoms at 16 days post inoculation (dpi), while Nicotiana benthamiana had no obvious symptoms at 10 or 20 dpi (Supplementary Fig S1). BCMV infections were confirmed in yam bean plants (infection rate 6/6) and N. benthamiana plants (infection rate 8/8) by RT-PCR at 16 dpi and 10 dpi, respectively. Twelve further P. erosus plants (cv. Mumashan) were collected from a field in Ningbo city and tested by RT-PCR with BCMV-specific primer pair BCMV CP (+)/(-) (Supplementary Table 1). Eight out of the 12 samples tested positive for BCMV by PCR-gel electrophoresis (Supplementary Fig S1) and Sanger sequencing, suggesting a high incidence of BCMV infection in this field. BCMV infection in yam bean has been reported from Indonesia (Damayanti et al., 2008) and Peru (Fuentes et al., 2012). To the best of our knowledge, this is the first report of BCMV naturally infecting yam bean in China. Thus, special attention and appropriate management strategies are needed to minimize the damage caused by BCMV to yam bean crops in China.

19.
BMC Plant Biol ; 21(1): 425, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34537002

RESUMO

BACKGROUND: The Catharanthus roseus RLK1-like kinase (CrRLK1L) is a subfamily of the RLK gene family, and members are sensors of cell wall integrity and regulators of cell polarity growth. Recent studies have also shown that members of this subfamily are involved in plant immunity. Nicotiana benthamiana is a model plant widely used in the study of plant-pathogen interactions. However, the members of the NbCrRLK1L subfamily and their response to pathogens have not been reported. RESULTS: In this study, a total of 31 CrRLK1L members were identified in the N. benthamiana genome, and these can be divided into 6 phylogenetic groups (I-VI). The members in each group have similar exon-intron structures and conserved motifs. NbCrRLK1Ls were predicted to be regulated by cis-acting elements such as STRE, TCA, ABRE, etc., and to be the target of transcription factors such as Dof and MYB. The expression profiles of the 16 selected NbCrRLK1Ls were determined by quantitative PCR. Most NbCrRLK1Ls were highly expressed in leaves but there were different and diverse expression patterns in other tissues. Inoculation with the bacterium Pseudomonas syringae or with Turnip mosaic virus significantly altered the transcript levels of the tested genes, suggesting that NbCrRLK1Ls may be involved in the response to pathogens. CONCLUSIONS: This study systematically identified the CrRLK1L members in N. benthamiana, and analyzed their tissue-specific expression and gene expression profiles in response to different pathogens and two pathogens associated molecular patterns (PAMPs). This research lays the foundation for exploring the function of NbCrRLK1Ls in plant-microbe interactions.


Assuntos
Catharanthus/genética , Nicotiana/genética , Proteínas de Plantas/genética , Proteínas Quinases/genética , Catharanthus/enzimologia , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Interações Hospedeiro-Patógeno , Filogenia , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/virologia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Domínios Proteicos , Proteínas Quinases/metabolismo , Pseudomonas syringae/patogenicidade , Nicotiana/microbiologia , Nicotiana/virologia , Fatores de Transcrição/genética
20.
New Phytol ; 229(2): 1036-1051, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32898938

RESUMO

In plants, autophagy is involved in responses to viral infection. However, the role of host factors in mediating autophagy to suppress viruses is poorly understood. A previously uncharacterized plant protein, NbP3IP, was shown to interact with p3, an RNA-silencing suppressor protein encoded by Rice stripe virus (RSV), a negative-strand RNA virus. The potential roles of NbP3IP in RSV infection were examined. NbP3IP degraded p3 through the autophagy pathway, thereby affecting the silencing suppression activity of p3. Transgenic overexpression of NbP3IP conferred resistance to RSV infection in Nicotiana benthamiana. RSV infection was promoted in ATG5- or ATG7-silenced plants and was inhibited in GAPC-silenced plants where autophagy was activated, confirming the role of autophagy in suppressing RSV infection. NbP3IP interacted with NbATG8f, indicating a potential selective autophagosomal cargo receptor role for P3IP. Additionally, the rice NbP3IP homolog (OsP3IP) also mediated p3 degradation and interacted with OsATG8b and p3. Through identification of the involvement of P3IP in the autophagy-mediated degradation of RSV p3, we reveal a new mechanism to antagonize the infection of RSV, and thereby provide the first evidence that autophagy can play an antiviral role against negative-strand RNA viruses.


Assuntos
Oryza , Tenuivirus , Viroses , Proteínas Relacionadas à Autofagia , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Nicotiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA