Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
J Am Chem Soc ; 145(44): 23948-23962, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37886816

RESUMO

Assembling macroscopic helices with controllable chirality and understanding their formation mechanism are highly desirable but challenging tasks for artificial systems, especially coordination polymers. Here, we utilize solvents as an effective tool to induce the formation of macroscopic helices of chiral coordination polymers (CPs) and manipulate their helical sense. We chose the Ni/R-,S-BrpempH2 system with a one-dimensional tubular structure, where R-,S-BrpempH2 stands for R-,S-(1-(4-bromophenyl)ethylaminomethylphosphonic acid). The morphology of the self-assemblies can be controlled by varying the cosolvent in water, resulting in the formation of twisted ribbons of R-,S-Ni(Brpemp)(H2O)·H2O (R-,S-2T) in pure H2O; needle-like crystals of R-,S-Ni(Brpemp)(H2O)2·1/3CH3CN (R-,S-1C) in 20 vol % CH3CN/H2O; nanofibers of R-,S-Ni(Brpemp)(H2O)·H2O (R-,S-3F) in 20-40 vol % methanol/H2O or ethanol/H2O; and superhelices of R-,S-Ni(Brpemp)(H2O)·H2O (R-,S-4H or 5H) in 40 vol % propanol/H2O. Interestingly, the helicity of the superhelix can be controlled by using a propanol isomer in water. For the Ni/R-BrpempH2 system, a left-handed superhelix of R-4H(M) was obtained in 40 vol % NPA/H2O, while a right-handed superhelix of R-5H(P) was isolated in 40 vol % IPA/H2O. These results were rationalized by theoretical calculations. Adsorption studies revealed the chiral recognition behavior of these compounds. This work may contribute to the development of chiral CPs with a macroscopic helical morphology and interesting functionalities.

2.
Chemistry ; 29(12): e202203454, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36445817

RESUMO

Photosensitive lanthanide-based single-molecule magnets (Ln-SMM) are very attractive for their potential applications in information storage, switching, and sensors. However, the light-driven structural transformation in Ln-SMMs hardly changes the coordination number of the lanthanide ion. Herein, for the first time it is reported that X-ray (λ=0.71073 Å) irradiation can break the coordination bond of Dy-OH2 in the three-dimensional (3D) metal-organic framework Dy2 (amp2 H2 )3 (H2 O)6 ⋅ 4H2 O (MDAF-5), in which the {Dy2 (OPO)2 } dimers are cross-linked by dianthracene-phosphonate ligands. The structural transformation proceeds in a single-crystal-to-single-crystal (SC-SC) fashion, forming the new phase Dy2 (amp2 H2 )3 (H2 O)4 ⋅ 4H2 O (MDAF-5-X). The phase transition is accompanied by a significant change in magnetic properties due to the alteration in coordination geometry of the DyIII ion from a distorted pentagonal bipyramid in MDAF-5 to a distorted octahedron in MDAF-5-X.

3.
Inorg Chem ; 62(5): 1864-1874, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35830693

RESUMO

By incorporating photoreactive anthracene moieties into binuclear Dy2O2 motifs, we obtain two new compounds with the formulas [Dy2(SCN)4(L)2(dmpma)4] (1) and [Dy2(SCN)4(L)2(dmpma)2(CH3CN)2] (2), where HL is 4-methyl-2,6-dimethoxyphenol and dmpma is dimethylphosphonomethylanthracene. Compound 1 contains face-to-face π-π interacted anthracene groups that meet the Schmidt rule for a [4 + 4] photocycloaddition reaction, while stacking of the anthracene groups in compound 2 does not meet the Schmidt rule. Compound 1 undergoes a reversible single-crystal-to-single-crystal structural transformation upon UV-light irradiation and thermal annealing, forming a one-dimensional coordination polymer of [Dy2(SCN)4(L)2(dmpma)2(dmpma2)]n (1UV). The process is concomitant with changes in the magnetic dynamics and photoluminescent properties. The spin-reversal energy barrier is significantly increased from 1 (55.9 K) to 1UV (116 K), and the emission color is changed from bright yellow for 1 to weak blue for 1UV. This is the first binuclear lanthanide complex that exhibits synergistic photocontrollable magnetic dynamics and photoluminescence. Ab initio calculations are conducted to understand the magnetostructural relationships of compounds 1, 1UV, and 2.

4.
Inorg Chem ; 62(51): 21044-21052, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38051505

RESUMO

Lanthanide-based molecular materials showing efficient circularly polarized luminescence (CPL) activity with a high quantum yield are attractive due to their potential applications in data storage, optical sensors, and 3D displays. Herein we present an innovative method to achieve enhanced CPL activity and a high quantum yield by doping a chromophore ligand into a coordination polymer superhelix. A series of homochiral europium(III) phosphonates with a helical morphology were prepared with the molecular formula S-, R-[Eu(cyampH)3-3n(nempH)3n]·3H2O (S/R-Eu-n, n = 0-5%). The doping of chromophore ligand S- or R-nempH2 into superhelices of S/R-Eu-0% not only turned on the CPL activity with the dissymmetry factor |glum| on the order of 10-3 but also increased the quantum yield by about 14-fold. This work may shed light on the development of efficient CPL-active lanthanide-based coordination polymers for applications.

5.
Angew Chem Int Ed Engl ; 62(15): e202300088, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36806408

RESUMO

Photo-responsive lanthanide-based single-molecule magnets (SMM) hold great promise for future switching and memory devices. Herein, we report a dysprosium phosphonate [DyIII (SCN)2 (NO3 )(depma)2 (4-hpy)2 ] (1Dy), which features a supramolecular framework containing layers of hydrogen-bonding network and pillars of π-π interacted anthracene units. The photocycloaddition reaction of anthracene pairs led to a rapid and reversible single-crystal-to-single-crystal (SC-SC) structural transition to form the 1D coordination polymer [DyIII (SCN)2 (NO3 )(depma2 )(4-hpy)2 ]n (2Dy), accompanied by photoswitchable SMM properties with the reduction of effective energy barrier by half and the narrowing of the butterfly-like hysteresis loop. The diluted sample showed a photo-induced switch of the blocking temperature (TB ) from 3.8 K for 1Dy@Y to 2.6 K for 2Dy@Y. This work may inspire the construction of lanthanide-based molecular materials with targeted photo-responsive magnetic properties.

6.
Chemistry ; 28(42): e202200721, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35570193

RESUMO

Layered heterometallic 5f-3d uranyl phosphonates can exhibit unique luminescent and/or magnetic properties, but the fabrication and properties of their 2D counterparts have not been investigated. Herein we report three heterobimetallic uranyl phosphonates, namely, [(UO2 )3 M(2-pmbH)4 (H2 O)4 ] ⋅ 2H2 O [MU, M=Co(II), CoU; Mn(II), MnU; Zn(II), ZnU; 2-pmbH3 =2-(phosphonomethyl)benzoic acid]. They are isostructural and display two-dimensional layered structures where the M(II) centers are encapsulated inside the windows generated by the diamagnetic uranyl phosphonate layer. Each M(II) has an octahedral geometry filled with four water molecules in the equatorial positions and two phosphonate oxygen atoms in the axial positions. The uranium atoms adopt UO7 pentagonal bipyramidal and UO6 square bipyramidal geometries. The lattice and coordination water molecules can be released by thermal treatment and reabsorbed in a reversible manner, accompanied with changes of magnetic dynamics. Interestingly, the bulk samples of MU can be exfoliated in acetone via freezing and thawing processes forming nanosheets with single-layer or two-layer thickness (MU-ns). Magnetic studies revealed that the CoU and MnU systems exhibited field-induced slow magnetization relaxation at low temperature. Compared with crystalline CoU, the magnetic relaxation of the CoU-ns aggregates is significantly accelerated. Moreover, photoluminescence measured at 77 K showed slight red-shift of the five characteristic uranyl emission bands for ZnU-ns in comparison with those of the crystalline ZnU. This work gives the first examples of 2D materials based on 5f-3d heterometallic uranyl phosphonates and illustrates the impact of dimension reduction on their magnetic/optical properties.

7.
Molecules ; 28(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36615357

RESUMO

The precise adjustment of handedness of helical architectures is important to regulate their functions. Macroscopic chirality inversion has been achieved in organic supramolecular systems by pH, metal ions, solvents, chiral and non-chiral additives, temperature, and light, but rarely in coordination polymers (CPs). In particular, salt-assisted macroscopic chirality inversion has not been reported. In this work, we carried out a systematic investigation on the role of pH and salt in regulating the morphology of CPs based on Gd(NO3)3 and R-(1-phenylethylamino)methylphosphonic acid (R-pempH2). Without extra NO3-, the chirality inversion from the left-handed superhelix R-M to the right-handed superhelix R-P can be achieved by pH modulation from 3.2 to 3.8. The addition of NaNO3 (2.0 eq) at pH 3.8 results in an inversion of chiral sense from R-P to R-M as a pure phase. To our knowledge, this is the first example of salt-assisted macroscopic helical inversion in artificial systems.

8.
J Am Chem Soc ; 143(42): 17587-17598, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34644503

RESUMO

Nanotubular materials have garnered considerable attention since the discovery of carbon nanotubes. Although the layer-to-tube rolling up mechanism has been well recognized in explaining the formation of many inorganic nanotubes, it has not been generally applied to coordination polymers (CPs). To uncover the key factors that determine the rolling-up of layered CPs, we have chosen the Co/R-, S-Xpemp [Xpemp = (4-X-1-phenylethylamino)methylphosphonic acid, X = H, F, Cl, Br] systems and study how the weak interactions influence the formation of layered or tubular structures. Four pairs of homochiral isostructural compounds R-, S-Co(Xpemp)(H2O)2 [X = H (1H), F (2F), Cl (3Cl), Br (4Br)] were obtained with tubular structures. The inclusion of 3,3'-azobipyridine (ABP) guest molecules led to compounds R-, S-[Co(Xpemp)(H2O)2]4·ABP·H2O with layered structures when X was Cl (5Cl) and Br (6Br), but tubular compounds 1H and 2F when X was H and F. Layered structures were also obtained for racemic compounds meso-Co(Xpemp)(H2O)2 [X = F (7F), Cl (8Cl), Br (9Br)] using racemic XpempH2 as the reaction precursor, but not when X = H. A detailed study on R-6Br revealed that layer-to-tube transformation occurred upon removal of ABP under hydrothermal conditions, forming R-4Br with a tubular structure. Similar layer-to-tube conversion did not occur in organic solvents. The results demonstrate that weak interlayer interactions are a prerequisite but not sufficient for the rolling-up of the layers. In the present cases, water also provides a driving force in the layer-to-tube transformation. The experimental results were rationalized by theoretical calculations.

9.
BMC Plant Biol ; 21(1): 67, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514310

RESUMO

BACKGROUND: Most plant viruses rely on vectors for their transmission and spread. One of the outstanding biological questions concerning the vector-pathogen-symbiont multi-trophic interactions is the potential involvement of vector symbionts in the virus transmission process. Here, we used a multi-factorial system containing a non-persistent plant virus, cucumber mosaic virus (CMV), its primary vector, green peach aphid, Myzus persicae, and the obligate endosymbiont, Buchnera aphidicola to explore this uncharted territory. RESULTS: Based on our preliminary research, we hypothesized that aphid endosymbiont B. aphidicola can facilitate CMV transmission by modulating plant volatile profiles. Gene expression analyses demonstrated that CMV infection reduced B. aphidicola abundance in M. persicae, in which lower abundance of B. aphidicola was associated with a preference shift in aphids from infected to healthy plants. Volatile profile analyses confirmed that feeding by aphids with lower B. aphidicola titers reduced the production of attractants, while increased the emission of deterrents. As a result, M. persicae changed their feeding preference from infected to healthy plants. CONCLUSIONS: We conclude that CMV infection reduces the B. aphidicola abundance in M. persicae. When viruliferous aphids feed on host plants, dynamic changes in obligate symbionts lead to a shift in plant volatiles from attraction to avoidance, thereby switching insect vector's feeding preference from infected to healthy plants.


Assuntos
Afídeos/virologia , Buchnera/fisiologia , Capsicum/virologia , Cucumovirus/fisiologia , Doenças das Plantas/virologia , Simbiose , Animais , Afídeos/efeitos dos fármacos , Afídeos/microbiologia , Afídeos/fisiologia , Capsicum/microbiologia , Capsicum/parasitologia , Comportamento Alimentar , Interações Hospedeiro-Parasita , Insetos Vetores/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Rifampina/farmacologia , Compostos Orgânicos Voláteis/metabolismo
10.
Chemistry ; 27(67): 16722-16734, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34632663

RESUMO

Helical architectures with controllable helical sense bias have recently attracted considerable interest for mimicking biological helices and developing novel chiral materials. Coordination polymers (CPs), composed of metal ion nodes and organic linkers, are intriguing systems showing tunable structures and functions. However, CPs with helical morphologies have rarely been explored so far. Particularly, chirality inversion through external stimulus has not been achieved in helical CPs. In this work, we carried out an in-depth investigation on the self-assembly of 1D gadolinium(III) phosphonate CPs using GdX3 (X=Cl, Br, I) and Gd(RSO3 ) (R=CH3 , C6 H5 , CF3 ) as metal sources and R-(1-phenylethylamino)methyl phosphonic acid (R-pempH2 ) as ligand. Superhelices were formed by precise control of the interchain interactions through different intercalated anions. Furthermore, the twisting direction of superhelices could be controlled by synergistic effect of anions and pH. This study may provide a new route to fabricate helical nanostructures of CPs with a desirable chiral sense and help understand the inner mechanism of the self-assembly process of macroscopic helical structures of molecular systems.


Assuntos
Nanoestruturas , Polímeros , Ânions , Concentração de Íons de Hidrogênio , Estereoisomerismo
11.
Inorg Chem ; 59(13): 8935-8945, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32510942

RESUMO

Reaction of the metalloligand IrIII(ppy-COOH)3 and the anisotropic paramagnetic CoII ion under solvothermal conditions resulted in a metal-metalloligand coordination polymer, [CoII3(µ3-O)(µ-OH2){IrIII(ppy-COO)2(ppy-COOH)}2(H2O)4]·2DMF·xH2O (I). It consists of trimeric Co3O secondary building units (SBUs) bridged by pairs of Ir to form chains of alternate orthogonal squares. The compound undergoes two single-crystal to single-crystal transformations while retaining its general structural features. A chemical transformation occurs to give [CoII3(µ3-O){IrIII(ppy-COO)2(ppy-COOH)}2(H2O)4(DMF)]·DMF·H2O (II) by soaking in acetone, where a bridging water molecule departs and the solvent DMF bonds to the vacant site of the Co center. Both I and II undergo a temperature-induced transformation to [CoII3(µ3-O){IrIII(ppy-COO)2(ppy-COOH)}2(H2O)3(DMF)]·DMF (III), where one more coordinated water molecule is lost. The major difference in the three phases is in the Co coordination spheres, which have considerable consequences on the magnetism. Compound I displays paramagnetism down to 2 K, whereas II and III show weak ferromagnetism with TC values of 14 and 17 K, respectively.

12.
Inorg Chem ; 58(20): 14034-14045, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31560533

RESUMO

By virtue of its magnetic moment and variable valencies, the D4h paddlewheel ruthenium dimer is a desirable molecular building block for the construction of functional networks. If in addition to the Ru open axial site the organic ligand is designed to allow transversal connections, a wider range of structural possibilities is expected. The organic ligand can also be modified to introduce other functionalities. In the present study we employed a diphosphonate containing a protonated amine, 1-ammoniummethylenediphosphonate [NH3CH(PO3)23-; (Hamdp)], as the ligand to construct paddlewheel Ru2(Hamdp)2 building block. Three networks of different structural dimensionalities were obtained. (H3O)2[RuII2(Hamdp)2] (1) forms one-dimensional chain of S = 1 RuII2 bridged at axial positions through Ru-O bonds. From 1 as a starting material, its reaction with lanthanide ions results in the bimetallic Dy(H2O)3[Ru2(Hamdp)2][Ru2(Hamdp)2(H2O)2][Ru2(Hamdp)(amdp)]0.5·12H2O (2), which has a pillared-bilayer structure and Yb[Ru2(Hamdp)2]2[Ru2(Hamdp)2(H2O)2]·15H2O (3), which is a three-dimensional open framework, both contain mixed-valent RuII/III2 units and show new connection topologies of the Ru2 dimers. After activation 2 does not adsorb N2 and CO2 but takes up 12 H2O. In contrast, 3 take up all three gases. The optimum proton conductivities were moderate reaching 1.44 × 10-6 for 2 and 0.93 × 10-5 S cm-1 for 3 at 95% relative humidity and 55 °C.

13.
Int J Mol Sci ; 20(20)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600869

RESUMO

Tomato chlorosis virus (ToCV) is widespread, seriously impacting tomato production throughout the world. ToCV is semi-persistently transmitted by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Currently, insect olfaction is being studied to develop novel pest control technologies to effectively control B. tabaci and whitefly-borne virus diseases. Despite current research efforts, no report has been published on the role of odorant-binding proteins (OBPs) in insect preference under the influence of plant virus. Our previous research showed that viruliferous B. tabaci preferred healthy plants at 48 h after virus acquisition. In this study, we determined the effect of OBPs on the host preference interactions of ToCV and whiteflies. Our results show that with the increase in acquisition time, the OBP gene expressions changed differently, and the OBP3 gene expression showed a trend of first rising and then falling, and reached the maximum at 48 h. These results indicate that OBP3 may participate in the host preference of viruliferous whiteflies to healthy plants. When the expression of the OBP3 gene was knocked down by an RNA interference (RNAi) technique, viruliferous Mediterranean (MED) showed no preference and the ToCV transmission rate was reduced by 83.3%. We conclude that OBP3 is involved in the detection of plant volatiles by viruliferous MED. Our results provide a theoretical basis and technical support for clarifying the transmission mechanism of ToCV by B. tabaci and could provide new avenues for controlling this plant virus and its vectors.


Assuntos
Crinivirus/fisiologia , Inativação Gênica , Insetos Vetores/genética , Insetos Vetores/virologia , Interferência de RNA , Receptores Odorantes/genética , Animais , Transmissão de Doença Infecciosa , Genes Reporter , Hemípteros/virologia , Interações Hospedeiro-Patógeno/genética , Solanum lycopersicum/virologia , Doenças das Plantas/virologia
14.
Chemistry ; 24(51): 13495-13503, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29947086

RESUMO

By introducing the polar methoxy group into phenyl- or benzyl-phosphonate ligands, four cobalt phosphonates with layered structures are obtained, namely, [Co(4-mopp)(H2 O)] (1), [Co(4-mobp)(H2 O)] (2), [Co(3-mopp)(H2 O)] (3), and [Co(3-mobp)(H2 O)] (4), where 4- or 3-moppH2 is (4- or 3-methoxyphenyl)phosphonic acid and 4- or 3-mobpH2 is (4- or 3-methoxybenzyl)phosphonic acid. Compounds 1, 2, and 4 crystallize in the polar space groups Pmn21 or Pna21 , whereas compound 3 crystallizes in the centrosymmetric space group P21 /n. The layer topologies in the four structures are similar and can be viewed as perovskite type, where the edge-sharing [Co4 O4 ] rhombi are capped by the PO3 C groups. The phenyl and MeO groups in compounds 1-3 are heavily disordered, whereas that in 4 is ordered. Structural comparison based on the data at 296 and 123 K reveals distinct dynamic motion of the organic groups in compounds 1 and 2. The fluctuation of the polar MeO groups in these two compounds is confirmed by dielectric relaxation measurements. In contrast, the fluctuation of polar groups in compounds 3 and 4 is not evident. Interestingly, the dehydrated samples of 3 and 4 (i.e., 3-de and 4-de) exhibit one-step and two-step phase transitions associated with the motion of polar organic groups, as proven by DSC and dielectric measurements. The magnetic properties of compounds 1-4 are investigated, and strong antiferromagnetic interactions are found to mediate between the magnetic centers through µ-O(P) and O-P-O bridges.

15.
Inorg Chem ; 57(3): 1079-1089, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29363953

RESUMO

Three iridium(III)-based metal-organic frameworks (MOFs), namely [Cd3{Ir(ppy-COO)3}2(DMF)2(H2O)4]·6H2O·2DMF (1), [Cd3{Ir(ppy-COO)3}2(DMA)2(H2O)2]·0.5H2O·2DMA (2), and [Cd3{Ir(ppy-COO)3}2(DEF)2(H2O)2]·8H2O·2DEF (3) (ppy-COOH = methyl-3-(pyridin-2-yl)benzoic acid, DMF = N,N-dimethylformamide, DMA = N,N-dimethylacetamide, DEF = N,N-diethylformamide), have been synthesized and characterized. Single-crystal structural determinations reveal that compounds 1-3 are isostructural, showing a three-dimensional framework structure with (3,6) connected rtl topologyin whose trimers of {Cd3(COO)6} are cross-linked by Ir(ppy-COO)33-. The structures are completely different from those of other Ir(III)-based MOFs. Compound 1 was selected for a detailed study on sensing properties. The excellent luminescence as well as good water stability of 1 makes it a highly selective and sensitive multiresponsive luminescent sensor for Fe3+ and Cr2O72-. The detection limits are 67.8 and 145.1 ppb, respectively. Compound 1 can also be used as an optical sensor for selective sensing of adenosine triphosphate (ATP2-) over adenosine diphosphate (ADP2-) and adenosine monophosphate (AMP2-) in aqueous solution. This is the first example of iridium(III)-based MOFs for the optical detection of Fe3+, Cr2O72-, and ATP2-. More interestingly, the luminescent composite film doped with 1% (w/w) of compound 1, 1@PMMA (PMMA = poly(methyl methacrylate)), can be successfully prepared, which endows efficient sensitivity for Fe3+ and Cr2O72- detection and thus provides great potential for future applications.

16.
Inorg Chem ; 57(19): 12143-12154, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30226764

RESUMO

Four pairs of enantiomeric dysprosium(III) phosphonates, namely, R- or S-[Dy3(pempH2)2(pempH)7]2(NO3)4·12H2O ( R-1 or S-1), R- or S-[Dy3(pempH)7(pempH2)2]Cl2·2H2O ( R-2 or S-2), R- or S-[Dy3(pempH)7(pempH2)2]Br2·2H2O ( R-3 or S-3), and R- or S-[Dy11(pempH2)6(pempH)27](CF3SO3)6·22H2O ( R-4 or S-4) are reported, where R- or S-pempH2 represent R- or S-(1-phenylethyl)amino] methylphosphonic acid. All show homochiral chain structures, charge-balanced by counteranions. A comparison of the crystal morphologies of the R-isomers reveals that the overall shapes are quite similar for the four compounds, but the aspect ratio changes remarkably following the sequence: R-1 < R-2 < R-3 < R-4. The sequence is in agreement with the decreasing interchain interactions related to different counteranions, which is rationalized by molecular simulations. The counteranions also influence the intrachain structures and the local coordination environments of the DyIII ions. As a result, compounds R-2 and R-3 exhibit distinct dual relaxation processes at zero dc field with the effective energy barriers for the slow- and fast-relaxation being 79.1 and 37.6 K for R-2, and 80.0 and 39.1 K for R-3, respectively. For compounds R-1 and R-4, however, slow magnetic relaxation is also observed at zero dc field but without the appearance of maxima down to 1.8 K.

17.
Inorg Chem ; 57(21): 13252-13258, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30338990

RESUMO

Iridium(IV) oxides have gained increased attention in recent years owing to the presence of competing spin-orbit coupling and Coulomb interactions, which facilitate the emergence of novel quantum phenomena. In contrast, the electronic structure and magnetic properties of IrIV-based molecular materials remain largely unexplored. In this paper, we take a fresh look at an old but puzzling compound, Na2IrCl6, which can be hydrated to form two stable phases with formulas Na2IrCl6·2H2O and Na2IrCl6·6H2O. Their crystal structures are well illustrated based on X-ray powder diffraction data. Magnetic studies reveal that Na2IrCl6 and Na2IrCl6·2H2O are canted antiferromagnets with ordering temperatures of 7.4 and 2.7 K, respectively, whereas Na2IrCl6·6H2O is paramagnetic down to 1.8 K. First-principle calculations on Na2IrCl6 reveal a Jeff = 1/2 ground state, and the band structures show that Na2IrCl6 is a spin-orbital-induced semiconductor with an indirect gap of about 0.18 eV.

18.
Angew Chem Int Ed Engl ; 57(28): 8577-8581, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29757484

RESUMO

In search of magneto-optic materials, the mononuclear compounds LnIII (depma)(NO3 )3 (hmpa)2 (Ln=Dy, Gd) were synthesized. The anthracene moieties undergo [4+4] dimerization when irradiated at 365 nm without loss of crystallinity. The Dy compound switches from a single-ion to a single-molecule magnet with doubling of the spin reversal barrier energy and from yellow-green to blue-white emission. The dimerization is reversed by heating at 100 °C or partially on light irradiating at 254 nm. The results suggest that lanthanide phosphonates with anthracene are promising smart materials displaying synergistic magneto-optic property.

19.
Chemistry ; 23(5): 1086-1092, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-27878863

RESUMO

Two pairs of homochiral magnesium phosphonates, namely (R)-, (S)-[Mg(pemp)(H2 O)2 ] (1) and (R)-, (S)-Mg10 (pemp)10 (H2 O)10 ]⋅3 H2 O (2) are reported (pemp2- =(R)- or (S)-(1-phenylethylamino) methylphosphonate). Compounds 1 show one-dimensional tubular structures. The tube wall is purely inorganic, containing six-membered rings made up of corner-sharing {MgO5 N} octahedra and {PO3 C} tetrahedra. The organic groups reside outside the tube. A bottom-up "direct growing" mechanism is proposed for the formation of the nanotubular structures of 1, based on the electrospray ionization mass spectrometry studies. Compounds 2 display two-dimensional layered structures containing cross-linked squashed nanotubes. Interestingly, the two structures can interconvert reversibly upon temperature and pH modulation. This is the first report of a metal-organic nanotube that can shrink and recover in a reversible manner.

20.
Chemistry ; 23(27): 6615-6624, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28317183

RESUMO

Artificial control and engineering of metal-organic framework (MOF) crystals with defects can endow them with suitable properties for applications in gas storage, separation, and catalysis. A series of defective iridium-containing MOFs, [Zn4 (µ4 -O)(Ir-A)2(1-x) (Ir-B)2x ] (ZnIr-MOF-dx ), were synthesized by doping heterostructured linker Ir-BH3 into the parent [Zn4 (µ4 -O)(Ir-A)2 ] (ZnIr-MOF), in which Ir-AH3 represents [Ir(ppy-COOH)3 ] (ppyCOOH=3-(pyridin-2-yl)benzoic acid) and Ir-BH3 is [Ir(ppy-COOH)2 (2-pyPO3 H)] (2-pyPO3 H2 =2-pyridylphosphonic acid). Samples with different degrees of defects were characterized by SEM, IR and NMR spectroscopy, powder XRD measurements, and thermal and elemental analyses. ZnIr-MOF-d0.3 was selected as a representative for gas (N2 , CO2 ) or vapor (H2 O, alcohol) sorption studies. The results demonstrate that defective ZnIr-MOF-d0.3 possesses multiple pore size distributions, ranging from micro- to mesopores, unlike the parent material, which shows a uniform micropore distribution. The hydrophilicity of the interior surface is also increased after defect engineering. As a result, ZnIr-MOF-d0.3 shows an enhanced adsorption capability toward n-butanol, relative to that of the parent compound. Optical studies reveal that both ZnIr-MOF and ZnIr-MOF-d0.3 have low band gaps (2.35 and 2.40 eV), corresponding to semiconductors. ZnIr-MOF-d0.3 exhibits dramatically increased photocatalytic efficiency for dye degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA