RESUMO
In this study, we conducted two heat treatment processes, namely double aging (DA) and solid solution followed by double aging (SA), on the Inconel 718 alloy fabricated by selective laser melting (SLM). The aim was to investigate the microstructure evolution and mechanical properties of Inconel 718 under different heat treatment conditions. To achieve this, we employed advanced techniques such as Scanning Electron Microscope (SEM), electron backscattered diffraction (EBSD), energy dispersive spectroscopy (EDS), x-ray diffraction (XRD), Tofwerk time-of-flight secondary ion mass spectrometer (TOF-SIMS), and transmission electron microscopy (TEM). Our experimental findings reveal the presence of cellular high-density dislocation substructures in the as-received (AR) specimens, with a significant accumulation of Laves phase precipitates at grain boundaries and subgrain boundaries. After the DA treatment, the cellular substructure persists, with higher concentrations of γ" and γ' strengthened phases compared to AR specimen. Conversely, the SA specimen undergoes almost complete recrystallization, resulting in the dissolution of brittle Laves phases and a substantial increase in the content of strengthening phase γ'' and γ'. As a consequence of the precipitation of the γ'' and γ' strengthened phase and the modification of the microstructure, the material exhibits enhanced strength and hardness, albeit at the expense of reduced plasticity. The investigation of the relationship between heat treatment processes and precipitation behavior indicates that the SA heat treatment yields favorable mechanical properties that strike a balance between strength and plasticity.
Assuntos
Ligas , Temperatura Alta , Lasers , Ligas/química , Teste de Materiais , Difração de Raios X , Microscopia Eletrônica de VarreduraRESUMO
The effect of hydrogen content on the deformation and fracture behavior of 27Cr-4Mo-2Ni super ferritic stainless steel (SFSS) was investigated in this study. It was shown that the plasticity and yield strength of SFSS were very susceptible to hydrogen content. The introduction of hydrogen led to a significant decrease in elongation and a concurrent increase in yield strength. Nevertheless, a critical threshold was identified in the elongation reduction, after which the elongation remained approximately constant even with more hydrogen introduced, while the yield strength exhibited a monotonic increase with increasing hydrogen content within the experimental range, attributed to the pinning effect of the hydrogen Cottrell atmosphere on dislocations. Furthermore, the hydrogen-charged SFSS shows an apparent drop in flow stress after upper yielding and a reduced work hardening rate during the subsequent plastic deformation. The more hydrogen is charged, the more the flow stress drops, and the lower the work hardening rate becomes.
RESUMO
Determining the preferred orientation of plating film is of practical importance. In this work, the Rietveld method and quantitative texture analysis (RM+QTA) are used to analyze the preferred orientation of plating silver film with XRD profile, whose <311> axial texture can be completely described by a set of exponential harmonics index, extracted from a single XRD profile, C41,1(0.609), C61,1(0.278), C81,1(-0.970). The constructed pole figures with the index of the exponential harmonic are following those measured by the multi-axis diffractometer. The method using exponential harmonic index can be extended to characterize the plating by electroplating in a quantitative harmonic description. In addition, a new dimension involving crystallite shape and size is considered in characterizing the preferred orientation.