Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Rev Cardiovasc Med ; 25(1): 12, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39077640

RESUMO

Background: Atrial fibrillation is the most common tachyarrhythmia, while catheter ablation is an effective therapy for atrial fibrillation. However, pain and nervousness may occur during the procedure. Moreover, a consensus has still not been reached on which is the best kind of analgesic and sedative to use in these procedures. Therefore, we conducted a network meta-analysis to evaluate the efficacy and safety of analgesics and sedatives used in catheter ablation for atrial fibrillation. Methods: We searched PubMed, Cochrane Library, Web of Science, EMBASE, China National Knowledge Infrastructure, and Baidu Wenku document download website for randomized controlled trials from their inception to February 26, 2023. Only studies that made comparisons among analgesics or sedatives and involved patients with atrial fibrillation undergoing radiofrequency catheter ablation were included. The efficacy endpoints were Ramsay sedation scores and visual analog scale scores during the radiofrequency catheter ablation for atrial fibrillation. The safety endpoints were the incidence of respiratory depression, hypotension, nausea, and vomiting. Pairwise comparisons and frequency method analyses were conducted. Results were reported as odds ratio (OR), mean difference (MD), and corresponding 95% confidence intervals (CIs). We assessed the risk bias of the studies in accordance with the Cochrane Handbook for Systematic Reviews of Interventions. Results: Out of the 709 articles initially retrieved, 14 studies, with a total of 1156 participants, were included. In terms of efficacy, patients receiving dexmedetomidine during radiofrequency ablation for atrial fibrillation had higher Ramsay sedation scores than those receiving midazolam plus fentanyl, or its derivatives (MD -0.88, 95% CI [-0.04 to -0.72]). Compared with morphine, dezocine (MD 1.88, 95% CI [1.16 to 2.60]), hydromorphone (MD 4.07, 95% CI [3.56 to 4.58]), butorphanol (MD 3.18, 95% CI [2.38 to 3.96]), and fentanyl or its derivatives (MD 1.57, 95% CI [1.25 to 1.89]) had a better analgesic effect. In terms of safety, propofol (OR 16.46; 95% CI [1.54 to 175.95]) and midazolam plus fentanyl or its derivatives (OR 7.02; 95% CI [1.33 to 36.99]) significantly increased the incidence of respiratory depression compared with dexmedetomidine plus fentanyl or its derivatives. Dexmedetomidine plus fentanyl or its derivatives reduced the incidence of nausea and vomiting compared with fentanyl alone (OR 4.74; 95% CI [1.01 to 22.22]). Propofol was associated with a lower incidence of nausea and vomiting than hydromorphone (OR 0.01; 95% CI [0.00 to 0.59]) and fentanyl or its derivatives (OR 0.01; 95% CI [0.00 to 0.51]). There was no statistically significant difference in the incidence of hypotension between any two strategies. Conclusions: Hydromorphone and butorphanol had better analgesic effects than fentanyl or its derivates. Dexmedetomidine had better sedative effects. In terms of safety, dexmedetomidine, oxymorphone, and butorphanol were superior. It is necessary to explore the regimen that can consider both the effectiveness and safety during radiofrequency catheter ablation for atrial fibrillation (AF). The PROSPERO Registration: This study was registered with PROSPERO, number: CRD42023403661.

2.
Chem Soc Rev ; 50(23): 12915-12984, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34622260

RESUMO

Smart electronic devices are becoming ubiquitous due to many appealing attributes including portability, long operational time, rechargeability and compatibility with the user-desired form factor. Integration of mobile power sources (MPS) based on photovoltaic technologies with smart electronics will continue to drive improved sustainability and independence. With high efficiency, low cost, flexibility and lightweight features, halide perovskite photovoltaics have become promising candidates for MPS. Realization of these photovoltaic MPS (PV-MPS) with unconventionally extraordinary attributes requires new 'out-of-box' designs. Natural materials have provided promising designing solutions to engineer properties under a broad range of boundary conditions, ranging from molecules, proteins, cells, tissues, apparatus to systems in animals, plants, and humans optimized through billions of years of evolution. Applying bio-inspired strategies in PV-MPS could be biomolecular modification on crystallization at the atomic/meso-scale, bio-structural duplication at the device/system level and bio-mimicking at the functional level to render efficient charge delivery, energy transport/utilization, as well as stronger resistance against environmental stimuli (e.g., self-healing and self-cleaning). In this review, we discuss the bio-inspired/-mimetic structures, experimental models, and working principles, with the goal of revealing physics and bio-microstructures relevant for PV-MPS. Here the emphasis is on identifying the strategies and material designs towards improvement of the performance of emerging halide perovskite PVs and strategizing their bridge to future MPS.


Assuntos
Compostos de Cálcio , Energia Solar , Fontes de Energia Elétrica , Humanos , Óxidos , Titânio
3.
Crit Rev Food Sci Nutr ; 59(14): 2335-2347, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30285472

RESUMO

3D printing, also referred to as additive manufacturing, offers a wide range of new processing possibilities to the food industry. This technology allows a layer by layer (bottom to top) printing of predefined slices of designed and desired objects. 3D printing potentially allows rapid manufacturing of complex objects, which are unhindered by design complexity, thus providing substantial liberty to create new and untested geometric shapes. In terms of food manufacturing, the potential that 3D food printing technologies can bring may revolutionize certain aspects of food manufacturing, providing the convenience of low-cost customized fabrication and even tailored nutrition control. The most common materials suitable for 3D food printing are carbohydrate, fat, protein, fiber and functional components. In the present study, the characteristics of raw materials or additives used during 3D printing, and requirements for estimating and improving their printing performance and self-supporting ability in extrusion-based printing regarding rheological characteristics of 3D food printing materials are reviewed. As an innovative process, 3D food printing may induce a revolution in certain areas of food manufacturing.


Assuntos
Indústria Alimentícia/métodos , Alimentos , Impressão Tridimensional , Reologia , Tecnologia de Alimentos/métodos
7.
Carbohydr Polym ; 331: 121891, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388064

RESUMO

This study investigated the properties of 3D-printed high internal phase emulsion (HIPE)-rice starch gels, specially tailored for personalized nutrition by co-encapsulating resveratrol and ß-carotene. We examined the influence of amylose content on various parameters, including functional groups, linear and nonlinear rheology, printed precision and microstructural stability. Additionally, we assessed the protective efficacy and release in vitro digestion of these gels on the encapsulated bioactive components. Compared to HIPE, HIPE-starch gels differently impacted by amylose content in starches. Low-level amylose weakened the network structure, attributed to amylose mainly responsible for gel formation and weak hydrogen bond interaction between the surface-active molecules and amylose due to gelatinized starch granules rupturing the protein network. Oppositely, high-level amylose led to denser, more gel-like structures with enhanced mechanical strength and reversible deformation resistance, making them suitable for 3D printing. Furthermore, 3D-printed gels with high-level amylose demonstrated well-defined structures, smooth surfaces, stable printing and less dimension deviation. They were also regarded as effective entrapping and delivery systems for resveratrol and ß-carotene, protecting them against degradation from environment and damage under the erosion of digestive fluid. Overall, this research offers a straightforward strategy for creating reduced-fat HIPE gels that serve as the carrier for personalized nutraceutical foods.


Assuntos
Amilose , Oryza , Amilose/química , Oryza/química , Emulsões , beta Caroteno , Resveratrol , Amido/química , Géis/química , Reologia
8.
Free Radic Biol Med ; 214: 101-113, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360276

RESUMO

Sorafenib is a targeted anticancer drug in clinic. Low-dose sorafenib has been reported to activate AMPK through inducing mitochondrial uncoupling without detectable toxicities. AMPK activation has been the approach for extending lifespan, therefore, we investigated the effect of sorafenib on lifespan and physical activity of C. elegans and the underlying mechanisms. In the present study, we found that the effect of sorafenib on C. elegans lifespan was typically hermetic. Sorafenib treatment at higher concentrations (100 µM) was toxic but at lower concentrations (1, 2.5, 5 µM) was beneficial to C. elegans. Sorafenib (1 µM) treatment for whole-life period extended C. elegans lifespan and improved C. elegans physical activity as manifested by increasing pharyngeal pumping and body movement, preserving intestinal barrier integrity, muscle fibers organization and mitochondrial morphology. In addition, sorafenib (1 µM) treatment enhanced C. elegans stress resistance. Sorafenib activated AMPK through inducing mitochondrial uncoupling in C. elegans. Sorafenib treatment activated DAF-16, SKN-1, and increased SOD-3, HSP-16.2, GST-4 expression in C. elegans. Sorafenib treatment induced AMPK-dependent autophagy in C. elegans. We conclude that low-dose sorafenib protects C. elegans against aging through activating AMPK/DAF-16 dependent anti-oxidant pathways and stimulating autophagy responses. Low-dose sorafenib could be a strategy for treating aging and aging-related diseases.


Assuntos
Caenorhabditis elegans , Longevidade , Animais , Caenorhabditis elegans/genética , Sorafenibe/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Envelhecimento
9.
Nat Commun ; 15(1): 772, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278790

RESUMO

Biological molecule-semiconductor interfacing has triggered numerous opportunities in applied physics such as bio-assisted data storage and computation, brain-computer interface, and advanced distributed bio-sensing. The introduction of electronics into biological embodiment is being quickly developed as it has great potential in providing adaptivity and improving functionality. Reciprocally, introducing biomaterials into semiconductors to manifest bio-mimetic functionality is impactful in triggering new enhanced mechanisms. In this study, we utilize the vulnerable perovskite semiconductors as a platform to understand if certain types of biomolecules can regulate the lattice and endow a unique mechanism for stabilizing the metastable perovskite lattice. Three tiers of biomolecules have been systematically tested and the results reveal a fundamental mechanism for the formation of a "reverse-micelle" structure. Systematic exploration of a large set of biomolecules led to the discovery of guiding principle for down-selection of biomolecules which extends the classic emulsion theory to this hybrid systems. Results demonstrate that by introducing biomaterials into semiconductors, natural phenomena typically observed in biological systems can also be incorporated into semiconducting crystals, providing a new perspective to engineer existing synthetic materials.


Assuntos
Compostos de Cálcio , Micelas , Óxidos , Titânio , Óxidos/química , Semicondutores , Materiais Biocompatíveis
10.
mSphere ; 9(2): e0051823, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38240581

RESUMO

Sudapyridine (WX-081) is a structural analog of bedaquiline (BDQ), which shows anti-tuberculosis and non-tuberculous mycobacteria (NTM) activities but, unlike BDQ, did not prolong QT interval in animal model studies. This study evaluated the antibacterial activity of this novel compound against Mycobacterium avium, Mycobacterium abscessus, and Mycobacterium chelonae in vitro and in vivo. The minimum inhibitory concentration (MIC) of WX-081 against three kinds of non-tuberculous mycobacteria (NTM) clinical strains was determined using microplate-based alamarBlue assay (MABA), and the antibacterial activity of WX-081 against NTM in J774A.1 cells and mice was evaluated. MIC ranges of WX-081 against clinical strains of M. avium and M. abscessus were 0.05-0.94 µg/mL, 0.88-7.22 µg/mL (M. abscessus subsp. abscessus), and 0.22-8.67 µg/mL (M. abscessus subsp. massiliense), respectively, which were slightly higher than those of BDQ. For M. avium, M. abscessus, and M. chelonae, WX-081 can reduce the intracellular bacterial load by 0.13-1.18, 0.18-1.50, and 0.17-1.03 log10 colony forming units (CFU)/mL, respectively, in a concentration-dependent manner. WX-081 has bactericidal activity against three NTM species in mice. WX-081 exhibited anti-NTM activity to the same extent as BDQ both in vivo and in vitro. WX-081 is a promising clinical candidate and should be studied further in clinical trials. IMPORTANCE: Due to the rapidly increased cases globally, non-tuberculous mycobacteria (NTM) disease has become a significant public health problem. NTM accounted for 11.57% of all mycobacterial isolates in China, with a high detection rate of Mycobacterium abscessus, Mycobacterium avium, and Mycobacterium chelonae during 2000-2019. Treatment of NTM infection is often challenging, as natural resistance to most antibiotics is quite common among different NTM species. Hence, identifying highly active anti-NTM agents is a priority for potent regimen establishment. The pursuit of new drugs to treat multidrug-resistant tuberculosis may also identify some agents with strong activity against NTM. Sudapyridine (WX-081) is a structural analog of bedaquiline (BDQ), which was developed to retain the anti-tuberculosis efficacy but eliminates the severe side effects of BDQ. This study initially evaluated the antimicrobial activity of this novel compound against M. avium, M. abscessus, and M. chelonae in vitro, in macrophages and mice, respectively.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium chelonae , Piridinas , Tuberculose , Animais , Camundongos , Mycobacterium avium , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
11.
Front Public Health ; 12: 1344024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38439754

RESUMO

Background: Vitamin D deficiency (VDD) is a worldwide disease. VDD is also associated with an increased risk of HIV-related comorbidities and mortality, and patients have a tendency to develop active tuberculosis compared to those with latent tuberculosis infection. Vitamin D supplementation may modulate HIV replication, improve TB inflammation and reduce progression of HIV-TB co-infection. Methods: We meta-analyzed individual participant data from cohort studies, cross-sectional study, and RCTs of vitamin D in HIV group, TB group, and HIV-TB group. The primary outcomes were differences in vitamin D level and VDD prevalence between three groups, the secondary outcomes were CD4 count, HIV viral load, time to sputum smear conversion, time to culture conversion, relapse, morality, and TB score. Results: For vitamin D levels, the overall mean difference (MD) between HIV group and TB group was -0.21 (95% CI, -20.80-20.38; p = 0.9, I2 = 84%), HIV group and HIV-TB group was 0.87 (95% CI, -11.45-13.20; p = 0.89, I2 = 87%), and TB group and HIV-TB group was 1.17 (95% CI, -5.21-7.55; p = 0.72, I2 = 85%). For vitamin D deficiency prevalence, the overall odds ratio (OR) for HIV group versus TB group was 1.23 (95% CI, 0.46-3.31; p = 0.68; I2 = 70%), HIV group versus HIV-TB group was 1.53 (95% CI, 1.03-2.29; p = 0.04; I2 = 0%), and TB group versus HIV-TB group was 0.85 (95% CI, 0.61-1.20; p = 0.36; I2 = 22%). In HIV-TB group, the overall OR for vitamin D group versus placebo group was 0.78 (95% CI, 0.34-1.67; p = 0.52; I2 = 60%). Conclusion: Our findings indicated that there were no variations in vitamin D levels between three groups. The prevalence of vitamin D deficiency was higher in the HIV-TB group than in the HIV group. Additionally, the administration of vitamin D supplements did not have obvious impact on CD4 count and viral load. Likewise, vitamin D had no effect on time to sputum smear conversion, time to culture conversion, relapse, 12-month morality, and TB score.


Assuntos
Coinfecção , Infecções por HIV , Deficiência de Vitamina D , Humanos , Vitamina D , Coinfecção/epidemiologia , Estudos Transversais , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Vitaminas , Deficiência de Vitamina D/epidemiologia , Recidiva
12.
JCI Insight ; 9(13)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771644

RESUMO

Hypotrichosis is a genetic disorder characterized by a diffuse and progressive loss of scalp and/or body hair. Nonetheless, the causative genes for several affected individuals remain elusive, and the underlying mechanisms have yet to be fully elucidated. Here, we discovered a dominant variant in a disintegrin and a metalloproteinase domain 17 (ADAM17) gene caused hypotrichosis with woolly hair. Adam17 (p.D647N) knockin mice mimicked the hair abnormality in patients. ADAM17 (p.D647N) mutation led to hair follicle stem cell (HFSC) exhaustion and caused abnormal hair follicles, ultimately resulting in alopecia. Mechanistic studies revealed that ADAM17 binds directly to E3 ubiquitin ligase tripartite motif-containing protein 47 (TRIM47). ADAM17 variant enhanced the association between ADAM17 and TRIM47, leading to an increase in ubiquitination and subsequent degradation of ADAM17 protein. Furthermore, reduced ADAM17 protein expression affected the Notch signaling pathway, impairing the activation, proliferation, and differentiation of HFSCs during hair follicle regeneration. Overexpression of Notch intracellular domain rescued the reduced proliferation ability caused by Adam17 variant in primary fibroblast cells.


Assuntos
Proteína ADAM17 , Alopecia , Folículo Piloso , Ubiquitina-Proteína Ligases , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Animais , Alopecia/genética , Alopecia/metabolismo , Alopecia/patologia , Camundongos , Folículo Piloso/metabolismo , Folículo Piloso/patologia , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Masculino , Transdução de Sinais/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Feminino , Mutação , Técnicas de Introdução de Genes , Proliferação de Células/genética , Diferenciação Celular/genética , Proteólise , Modelos Animais de Doenças , Fibroblastos/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética
13.
Front Pharmacol ; 14: 1229963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719857

RESUMO

Curcumae Longae Rhizoma (turmeric), Curcumae Radix and Curcumae Rhizoma are derived from the Curcuma species, and have gradually become three of the most commonly used medicinal herbs in China due to their different origins, processing methods and medicinal part. These three herbs have certain similarities in morphology, chemical composition, and pharmacological effects. All three of these herbs contain curcuminoids and volatile oil compounds, which exhibit anti-inflammatory, anti-tumor, antioxidant, and neuroprotective properties, although modern clinical applications have their own requirements. At present, there is no systematic guidelines for the clinical application of these three of Curcuma species; consequently, there is a high risk of unwanted phenomena associated with the mixing and indiscriminate use of these herbs. In this review, we focus predominantly on morphology, chemical composition, and the pharmacological activity of these three Curcuma herbs and summarize the current status of research in this field. Our goal is to provide a better understanding of clinical value of these Curcuma species so that we can provide reference guidelines for their further development, utilization and rational clinical application.

14.
Adv Mater ; 35(32): e2302484, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37120757

RESUMO

The electron-transport layer (ETL) plays an important role in improving the performance of flexible perovskite solar cells (F-PSCs). Herein, a room-temperature-processed SnO2 :OH ETL is demonstrated, that exhibits reduced defect density, in particular lower oxygen vacancy concentration, with better energy band alignment and more wettable surface for quality perovskite deposition. More importantly, an efficient electron-transfer channel is produced between the ETL and the perovskite layer due to the formation of hydrogen bonds at the interface, resulting in enhanced electron extraction from the perovskite. As a result, the efficiency of a large-area (36.50 cm2 ) flexible perovskite solar module based on MAPbI3 is increased to as high as 18.71%; this is thought to be the highest reported PCE value for flexible perovskite solar modules to date. In addition, it exhibits high durability while maintaining over 83% of its initial PCE after flexing test cycles. Further, F-PSCs with SnO2 :OH show remarkably long-term stability, owing to a high quality of the perovskite film and a strong coupling between the SnO2 :OH and perovskite layer caused by hydrogen bonds, which successfully inhibits moisture permeation.

15.
Front Cell Infect Microbiol ; 13: 1115530, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077530

RESUMO

Objectives: We aimed to evaluate the activity of PBTZ169 and pretomanid against non-tuberculous mycobacteriosis (NTM) in vitro and in vivo. Methods: The minimum inhibitory concentrations (MICs) of 11 antibiotics, against slow-growing mycobacteria (SGMs) and rapid-growing mycobacteria (RGMs) were tested using the microplate alamarBlue assay. The in vivo activities of bedaquiline, clofazimine, moxifloxacin, rifabutin, PBTZ169 and pretomanid against four common NTMs were assessed in murine models. Results: PBTZ169 and pretomanid had MICs of >32 µg/mL against most NTM reference and clinical strains. However, PBTZ169 was bactericidal against Mycobacterium abscessus (3.33 and 1.49 log10 CFU reductions in the lungs and spleen, respectively) and Mycobacterium chelonae (2.29 and 2.24 CFU reductions in the lungs and spleen, respectively) in mice, and bacteriostatic against Mycobacterium avium and Mycobacterium fortuitum. Pretomanid dramatically decreased the CFU counts of M. abscessus (3.12 and 2.30 log10 CFU reductions in the lungs and spleen, respectively), whereas it showed moderate inhibition of M. chelonae and M. fortuitum. Bedaquiline, clofazimine, and moxifloxacin showed good activities against four NTMs in vitro and in vivo. Rifabutin did not inhibit M. avium and M. abscessus in mice. Conclusion: PBTZ169 appears to be a candidate for treating four common NTM infections. Pretomanid was more active against M. abscessus, M. chelonae and M. fortuitum than against M. avium.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Infecções por Mycobacterium , Mycobacterium abscessus , Mycobacterium chelonae , Mycobacterium fortuitum , Animais , Camundongos , Mycobacterium avium , Clofazimina , Moxifloxacina/uso terapêutico , Camundongos Endogâmicos BALB C , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Micobactérias não Tuberculosas , Rifabutina/farmacologia , Rifabutina/uso terapêutico , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Testes de Sensibilidade Microbiana
16.
Sci Adv ; 9(15): eade2338, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37058567

RESUMO

The retina is the essential part of the human visual system that receives light, converts it to neural signal, and transmits to brain for visual recognition. The red, green, and blue (R/G/B) cone retina cells are natural narrowband photodetectors (PDs) sensitive to R/G/B lights. Connecting with these cone cells, a multilayer neuro-network in the retina provides neuromorphic preprocessing before transmitting to brain. Inspired by this sophistication, we develop the narrowband (NB) imaging sensor combining R/G/B perovskite NB sensor array (mimicking the R/G/B photoreceptors) with a neuromorphic algorithm (mimicking the intermediate neural network) for high-fidelity panchromatic imaging. Compared to commercial sensors, we use perovskite "intrinsic" NB PD to exempt the complex optical filter array. In addition, we use an asymmetric device configuration to collect photocurrent without external bias, enabling a power-free photodetection feature. These results display a promising design for efficient and intelligent panchromatic imaging.

17.
Adv Mater ; 35(11): e2208994, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36566084

RESUMO

Thermoelectric (TE) generators enable the direct and reversible conversion between heat and electricity, providing applications in both refrigeration and power generation. In the last decade, several TE materials with relatively high figures of merit (zT) have been reported in the low- and high-temperature regimes. However, there is an urgent demand for high-performance TE materials working in the mid-temperature range (400-700 K). Herein, p-type AgSbTe2 materials stabilized with S and Se co-doping are demonstrated to exhibit an outstanding maximum figure of merit (zTmax ) of 2.3 at 673 K and an average figure of merit (zTave ) of 1.59 over the wide temperature range of 300-673 K. This exceptional performance arises from an enhanced carrier density resulting from a higher concentration of silver vacancies, a vastly improved Seebeck coefficient enabled by the flattening of the valence band maximum and the inhibited formation of n-type Ag2 Te, and ahighly improved stability beyond 673 K. The optimized material is used to fabricate a single-leg device with efficiencies up to 13.3% and a unicouple TE device reaching energy conversion efficiencies up to 12.3% at a temperature difference of 370 K. These results highlight an effective strategy to engineer high-performance TE material in the mid-temperature range.

18.
Artigo em Inglês | MEDLINE | ID: mdl-35820158

RESUMO

Recently, two-dimensional (2D) van der Waals (vdWs) heterostructures provided excellent and fascinating platforms for advanced engineering in high-performance optoelectronic devices. Herein, novel ReS2/ReSe2 heterojunction phototransistors are constructed and explored systematically that display high responsivity, wavelength-dependent ambipolar photoresponse (negative and positive), ultrafast and polarization-sensitive detection capability. This photodetector exhibits a positive photoresponse from UV to visible spectrum (760 nm) with high photoresponsivities about 126.56 and 16.24 A/W under 350 and 638 nm light illumination, respectively, with a negative photoresponse over 760 nm, which is mainly ascribed to the ambipolar photoresponse modulated by gate voltage. In addition, profound linear polarization sensitivity is demonstrated with a dichroic ratio of about ∼1.2 at 638 nm and up to ∼2.0 at 980 nm, primarily owing to the wavelength-dependent absorption anisotropy and the stagger alignment of the crystal. Beyond static photodetection, the dynamic photoresponse of this vdWs device presents an ultrafast and repeatable photoswitching performance with a cutoff frequency (f3dB) exceeding 100 kHz. Overall, this study reveals the great potential of 2D ReX2-based vdWs heterostructures for high-performance, ultrafast, and polarization-sensitive broadband photodetectors.

19.
Foods ; 11(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35206087

RESUMO

The poor water-solubility and stability of capsaicin limits its widespread application in the industry. Spray-dried capsaicin microcapsules were fabricated using whey protein (WP) and octenyl-succinic-anhydride-modified starch (OS) as wall materials in this study. The aim is to investigate the impact of protein/starch ratio on microcapsules' physicochemical characteristics and stability. SEM images showed that microcapsule granules were uneven in size, and irregular, with some wrinkles and dents. FTIR illustrated a chemical interaction between capsaicin and composite wall materials. XRD showed that the spray-dried powders were mainly in amorphous form. As the whey protein content decreased, the yield (9.32-68.18%), encapsulation efficiency (49.91-94.57%), wettability (158.87-232.63 s), and solubility (74.99-96.57%) of samples decreased, but the mean particle size (3.22-26.03 µm), apparent viscosity, and shear stress tended to increase. Besides, DSC revealed that the glass transition temperatures (Tg) of samples were at around 85 °C. Capsaicin microcapsules with WP:OS at the ratio of 7:3 possessed the highest Tg, and the best storage stability. Based on our research, microencapsulation significantly improved the stability and the water-solubility of capsaicin. A small amount of OSA-starch mixed with whey protein as a promising carrier for capsaicin would greatly promote the application of capsaicin in the food industry.

20.
J Control Release ; 343: 43-56, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35066098

RESUMO

Transdermal delivery of solid nanoparticles remains a big problem. Microneedle administration and subcutaneous injection are the only two feasible approaches. Here, we developed a noninvasive strategy for the transdermal delivery of mesoporous silica nanoparticles (MSNs) using deep eutectic solvent (DES) from amino acid (AA) and citric acid (CA), which showed a substantial enhancement in skin penetration ability. MSNs were surface modified by CA and then reacted with Lysine (Lys) to form the DES-MSNs system. The covalent linkage of MSNs to the surrounding DES immobilized the nanoparticles and provided strong interactions. We used intradermal and transdermal penetration assays to identify that the AACA DES could synchronously drive the MSNs to penetrate across the entire skin via a "Drag" effect. Furthermore, this is the first study to detect the nanoparticles in the blood by topical administration routes. Thus, we achieved the transdermal delivery of the MSNs into blood circulation. This work would extend the application of the MSNs drug carrier system and provide a novel strategy for the controlled and sustained delivery of nanoparticles.


Assuntos
Nanopartículas , Dióxido de Silício , Administração Cutânea , Solventes Eutéticos Profundos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Porosidade , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA