Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 18(9): 3601-3615, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34388342

RESUMO

Chlorin e6 (Ce6) is a promising photosensitizer for tumor photodynamic therapy (PDT). However, the efficacy of Ce6 PDT is limited by Ce6's poor water solubility, rapid blood clearance, and inadequate accumulation in the tumor tissue. This problem is tackled in this work, wherein functionalized superparamagnetic iron oxide nanoparticles (IO-NPs) were used as carriers to deliver Ce6 to melanoma. The IO-NPs were coated with polyglycerol (PG) to afford good aqueous solubility. The chemotherapeutic agent doxorubicin (DOX) was attached to the PG coating via the hydrazone bond to afford affinity to the cell membrane and thereby promote the cell uptake. The hydrophobic nature of DOX also induced the aggregation of IO-NPs to form nanoclusters. Ce6 was then loaded onto the IO nanoclusters through physical adsorption and coordination with surface iron atoms, yielding the final composites IO-PG-DOX-Ce6. In vitro experiments showed that IO-PG-DOX-Ce6 markedly increased Ce6 uptake in mouse melanoma cells, leading to much-enhanced photocytotoxicity characterized by intensified reactive oxygen species production, loss of viability, DNA damage, and stimulation of tumor cell immunogenicity. In vivo experiments corroborated the in vitro findings and demonstrated prolonged blood clearance of IO-PG-DOX-Ce6. Importantly, IO-PG-DOX-Ce6 markedly increased the Ce6 distribution and retention in mouse subcutaneous melanoma grafts and significantly improved the efficacy of Ce6-mediated PDT. No apparent vital organ damage was observed at the same time. In conclusion, the IO-PG-DOX NPs provide a simple and safe delivery platform for efficient tumor enrichment of Ce6, thereby enhancing antimelanoma PDT.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Clorofilídeos/administração & dosagem , Melanoma/tratamento farmacológico , Sistemas de Liberação de Fármacos por Nanopartículas/química , Neoplasias Cutâneas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Linhagem Celular Tumoral , Clorofilídeos/química , Clorofilídeos/farmacocinética , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Feminino , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/química , Melanoma/patologia , Camundongos , Fotoquimioterapia , Neoplasias Cutâneas/patologia , Solubilidade , Distribuição Tecidual
2.
J Nanobiotechnology ; 19(1): 268, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488792

RESUMO

BACKGROUND: Tumor-associated macrophages (TAMs) are the most abundant stromal cells in the tumor microenvironment. Turning the TAMs against their host tumor cells is an intriguing therapeutic strategy particularly attractive for patients with immunologically "cold" tumors. This concept was mechanistically demonstrated on in vitro human and murine lung cancer cells and their corresponding TAM models through combinatorial use of nanodiamond-doxorubicin conjugates (Nano-DOX) and a PD-L1 blocking agent BMS-1. Nano-DOX are an agent previously proved to be able to stimulate tumor cells' immunogenicity and thereby reactivate the TAMs into the anti-tumor M1 phenotype. RESULTS: Nano-DOX were first shown to stimulate the tumor cells and the TAMs to release the cytokine HMGB1 which, regardless of its source, acted through the RAGE/NF-κB pathway to induce PD-L1 in the tumor cells and PD-L1/PD-1 in the TAMs. Interestingly, Nano-DOX also induced NF-κB-dependent RAGE expression in the tumor cells and thus reinforced HMGB1's action thereon. Then, BMS-1 was shown to enhance Nano-DOX-stimulated M1-type activation of TAMs both by blocking Nano-DOX-induced PD-L1 in the TAMs and by blocking tumor cell PD-L1 ligation with TAM PD-1. The TAMs with enhanced M1-type repolarization both killed the tumor cells and suppressed their growth. BMS-1 could also potentiate Nano-DOX's action to suppress tumor cell growth via blocking of Nano-DOX-induced PD-L1 therein. Finally, Nano-DOX and BMS-1 achieved synergistic therapeutic efficacy against in vivo tumor grafts in a TAM-dependent manner. CONCLUSIONS: PD-L1/PD-1 upregulation mediated by autocrine and paracrine activation of the HMGB1/RAGE/NF-κB signaling is a key response of lung cancer cells and their TAMs to stress, which can be induced by Nano-DOX. Blockade of Nano-DOX-induced PD-L1, both in the cancer cells and the TAMs, achieves enhanced activation of TAM-mediated anti-tumor response.


Assuntos
Antígeno B7-H1/efeitos dos fármacos , Doxorrubicina/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Nanodiamantes/química , Macrófagos Associados a Tumor , Células A549 , Animais , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Citocinas/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microambiente Tumoral/efeitos dos fármacos
3.
Pestic Biochem Physiol ; 156: 152-159, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31027575

RESUMO

Sex pheromone biosynthesis in moths relies on the activity of multiple enzymes, including Δ9 desaturase, which plays an important role in catalyzing desaturation at the Δ9 position of the carbon chain. However, the physiological function of moth Δ9 desaturase has not been elucidated in vivo. In this study, we used the CRISPR/Cas9 system to knockout the Δ9 desaturase gene (SlitDes11) of Spodoptera litura to analyze its role in sex pheromone biosynthesis. First, through the direct injection of SlitDes11-single guide RNA (sgRNA)/Cas9 messenger RNA into newly laid eggs, gene editing was induced in around 30% of eggs 24 h after injection and was induced in 20.8% of the resulting adult moths. Second, using a sibling-crossing strategy, insects with mutant SlitDes11 (bearing a premature stop codon) were selected, and homozygous mutants were obtained in the G5 generation. Third, pheromone gland extracts of adult female homozygous SlitDes11 mutants were analyzed using Gas chromatography (GC). The results showed that titers of all three ester sex pheromone components; Z9, E11-14:Ac, Z9,E12-14:Ac, and Z9-14:Ac; were reduced by 62.40%, 78.50%, and 72.50%, respectively. This study provides the first direct evidence for the role of SlitDes11 in sex pheromone biosynthesis in S. litura, and indicates the gene could be as potential target to disrupt sexual communication in S. litura for developing a new pollution-free insecticide.


Assuntos
Proteínas de Insetos/metabolismo , Atrativos Sexuais/metabolismo , Spodoptera/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Mutação em Linhagem Germinativa , Proteínas de Insetos/química , Proteínas de Insetos/genética , Mariposas/metabolismo , Mutação/genética , RNA Mensageiro , Alinhamento de Sequência
4.
Mol Genet Genomics ; 292(4): 795-809, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28349297

RESUMO

Species-specific sex pheromone is biosynthesized and released in most female moths as a chemical cue in mating communication. However, information on genes involved in this pathway is limited. The beet armyworm, Spodoptera exigua, is a cosmopolitan agricultural pest that causes severe economic losses to many crops. In China, the female sex pheromones in sex pheromone glands (PGs) of S. exigua have been measured which comprises (Z,E)-9,12-tetradecadienyl acetate, (Z)-9-tetradecen-l-ol, (Z)-9-tetradecenyl acetate, and (Z,E)-9,12-tetradecadien-1-ol in a ratio of 47:18:18:17. Fifty-nine putative genes related to sex pheromone biosynthesis were identified in the present study by sequencing and analyzing the sex pheromone gland (PG) transcriptome of S. exigua. Expression profiles revealed that two desaturase (SexiDes5 and SexiDes11) and three fatty acyl reductase (SexiFAR2, 3, and 9) genes had PG-specific expression, and phylogenetic analysis demonstrated that they clustered with genes known to be involved in pheromone synthesis in other moth species. Our results provide crucial background information that could facilitate the elucidation of sex pheromone biosynthesis pathway of S. exigua as well as other Spodoptera species and help identify potential targets for disrupting sexual communication in S. exigua for developing novel environment-friendly pesticides.


Assuntos
Atrativos Sexuais/biossíntese , Atrativos Sexuais/genética , Spodoptera/genética , Spodoptera/fisiologia , Aldeído Oxirredutases/genética , Animais , Sequência de Bases , China , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Monoinsaturados/metabolismo , Feminino , Regulação da Expressão Gênica , Filogenia , Análise de Sequência de DNA , Transcriptoma/genética
5.
Int J Pharm ; 606: 120872, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34246743

RESUMO

Doxorubicin (DOX) has been widely incorporated in various delivery forms for tareted treatment of malignant tumors such as triple-negative breast cancer (TNBC), with numerous studies reporting higher therapeutic efficacy and lower toxicity at the same time. However, little attention has been paid to whether DOX in a delivery form acts with the same actions and processes as in free form at the cellular level. This question was investigated in the present study wherein DOX conjugated with polyglycerol-coated nanodiamonds through the pH-sensitive hydrazone bond (Nano-DOX) was compared with DOX in free form on the 4T1 mouse TNBC model. We first found Nano-DOX to have a distinct intracellular distribution profile from DOX. Internalized Nano-DOX mainly stayed in the lysosomes slowly releasing DOX into the cytoplasm and then the nucleus whereas DOX displayed both nuclear and lysosomal distribution after cell uptake. Next, Nano-DOX was shown to induce endoplasmic reticulum (ER) stress without substantial DNA damage while DOX caused massive DNA damage as well as ER stress. Consequently, Nano-DOX only caused minimal activation of pro-inflammatory signaling mediated by MAPK/ERK, NF-κB and STAT3 as seen in response to DOX-inflicted DNA damage. Consistently, DOX-induced activities of ABC transporters, CXCL-1, GM-CSF and IL-6, which are tumor protective events downstream to the pro-inflammatory signaling, were also minimal in Nano-DOX-treated cancer cells. These findings are compelling proof that a chemotherapy in nano form can have distinct intracellular pharmacokinetics from its free from, which can result in altered cellular effects of the drug. Implications of these findings are discussed with an emphasis on nano-drug design, tumor pharmacology and chemoresistance.


Assuntos
Nanodiamantes , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Doxorrubicina , Humanos , Hidrazonas , Camundongos
6.
Insect Biochem Mol Biol ; 115: 103244, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31560967

RESUMO

Three different pheromone binding proteins (PBPs) can typically be found in the sensilla lymph of noctuid moth antennae, but their relative contributions in perception of the sex pheromone is rarely verified in vivo. Previously, we demonstrated that SlitPBP3 plays a minor role in the sex pheromone detection in Spodoptera litura using the CRISPR/Cas9 system. In the present study, the roles of two other SlitPBPs (SlitPBP1 and SlitPBP2) are further verified using the same system. First, by co-injection of Cas9 mRNA/sgRNA into newly laid eggs, a high rate of target mutagenesis was induced, 51.5% for SlitPBP1 and 46.8% for SlitPBP2 as determined by restriction enzyme assay. Then, the homozygous SlitPBP1 and SlitPBP2 knockout lines were obtained by cross-breeding. Finally, using homozygous knockout male moths, we performed electrophysiological (EAG recording) and behavioral analyses. Results showed that knockout of either SlitPBP1 or SlitPBP2 in males decreased EAG response to each of the 3 sex pheromone components (Z9,E11-14:Ac, Z9,E12-14:Ac and Z9-14:Ac) by 53%, 60% and 63% (for SlitPBP1 knockout) and 40%, 43% and 46% (for SlitPBP2 knockout), respectively. These decreases in EAG responses were similar among 3 pheromone components, but were more pronounced in SlitPBP1 knockout males than in SlitPBP2 knockout males. Consistently, behavioral assays with the major component (Z9,E11-14:Ac) showed that SlitPBP1 knockout males responded in much lower percentages than SlitPBP2 knockout males in terms of orientation to the pheromone, along with reduction in close range behaviors such as hairpencil display and mating attempt. Taken together, this study provides direct functional evidence for the roles of SlitPBP1 and SlitPBP2, as well as their relative importance (SlitPBP1 > SlitPBP2) in the sex pheromone perception. This information is valuable in understanding mechanisms of sex pheromone perception and may facilitate the development of PBP-targeted pest control techniques.


Assuntos
Comunicação Animal , Antenas de Artrópodes/fisiologia , Proteínas de Transporte/fisiologia , Proteínas de Insetos/fisiologia , Percepção Olfatória , Spodoptera/fisiologia , Animais , Sequência de Bases , Sistemas CRISPR-Cas , Feminino , Masculino , Mutação , Atrativos Sexuais
7.
Biochemistry ; 47(24): 6301-10, 2008 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-18498174

RESUMO

We used recombinant techniques to create a two-chain form (residues 1-345 and residues 346-758) of the vitamin K-dependent gamma-glutamyl carboxylase, a glycoprotein located in the endoplasmic reticulum containing five transmembrane domains. The two-chain carboxylase had carboxylase and epoxidase activities similar to those of one-chain carboxylase. In addition, it had normal affinity for the propeptide of factor IX. We employed this molecule to investigate formation of the one disulfide bond in carboxylase, the transmembrane structure of carboxylase, and the potential interactions among the carboxylase's transmembrane domains. Our results indicate that the two peptides of the two-chain carboxylase are joined by a disulfide bond. Proline 378 is important for the structure necessary for disulfide formation. Results with the P378L carboxylase indicate that noncovalent bonds maintain the two-chain structure even when the disulfide bond is disrupted. As we had previously proposed, the fifth transmembrane domain of carboxylase is the last and only transmembrane domain in the C-terminal peptide of the two-chain carboxylase. We show that the noncovalent association between the two chains of carboxylase involves an interaction between the fifth transmembrane domain and the second transmembrane domain. Results of a homology model of transmembrane domains 2 and 5 suggest that not only do these two domains associate but that transmembrane domain 2 may interact with another transmembrane domain. This latter interaction may be mediated at least in part by a motif of glycine residues in the second transmembrane domain.


Assuntos
Carbono-Carbono Ligases/química , Membrana Celular/enzimologia , Dissulfetos/química , Fragmentos de Peptídeos/química , Prolina/química , Vitamina K , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Carbono-Carbono Ligases/genética , Carbono-Carbono Ligases/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Prolina/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Vitamina K/química
8.
J Insect Physiol ; 103: 29-35, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28927827

RESUMO

The custom-design bacterial CRISPR/Cas9 system has been recently used in some insects, indicating a powerful technique for studies on gene function and transgenic insects. However, its use in lepidopteran pests is scarce. Here, we reported a CRISPR/Cas9 system mediated mutagenesis of biogenesis of lysosome-related organelles complex1, subunit 2 (BLOS2) gene in a noctuid pest Spodoptera litura. A fragment of SlitBLOS2 was identified by analyzing a S. litura transcriptome database by local basic BLAST, and the full length cDNA was acquired by RACE strategy. To clarify the function of SlitBLOS2, CRISPR/Cas9 based target mutagenesis of SlitBLOS2 was achieved, displaying a mosaic translucent integument in 62.3-70.6% larvae of G0 generation. Further PCR-based genotype analysis demonstrated various mutations occurred at the SlitBLOS2 specific target site. A homozygote mutant individual was obtained in G1 generation, in which the yellow strips and white spots on the larval integument completely disappeared. Our study clearly demonstrates the function of SlitBLOS2 in the integument coloration, and thus provides a useful marker gene for genome editing based gene functional study and pest control strategy in S. litura as well as other lepidopteran pests.


Assuntos
Proteínas de Insetos/fisiologia , Pigmentação/genética , Spodoptera/fisiologia , Animais , Sistemas CRISPR-Cas , Feminino , Marcadores Genéticos , Larva , Estágios do Ciclo de Vida , Masculino
9.
Biochemistry ; 45(49): 14755-63, 2006 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-17144668

RESUMO

The vitamin K-dependent carboxylase is an integral membrane protein which is required for the post-translational modification of a variety of vitamin K-dependent proteins. Previous studies have suggested carboxylase is a glycoprotein with N-linked glycosylation sites. In this study, we identify the N-glycosylation sites of carboxylase by mass spectrometric peptide mapping analyses combined with site-directed mutagenesis. Our mass spectrometric results show that the N-linked glycosylation in carboxylase occurs at positions N459, N550, N605, and N627. Eliminating these glycosylation sites by changing asparagine to glutamine caused the mutant carboxylase to migrate faster on SDS-PAGE gels, adding further evidence that these sites are glycosylated. In addition, the mutation studies identified N525, a site that cannot be recovered by mass spectroscopy analysis, as a glycosylation site. Furthermore, the potential glycosylation site at N570 is glycosylated only if all five natural glycosylation sites are simultaneously mutated. Removal of the oligosaccharides by glycosidase from wild-type carboxylase or by elimination of the functional glycosylation sites by site-directed mutagenesis did not affect either the carboxylation or epoxidation activity when the small FLEEL pentapeptide was used as a substrate, suggesting that N-linked glycosylation is not required for the enzymatic function of carboxylase. In contrast, when site N570 and the five natural glycosylation sites were mutated simultaneously, the resulting carboxylase protein was degraded. Our results suggest that N-linked glycosylation is not essential for carboxylase enzymatic activity but is important for protein folding and stability.


Assuntos
Carbono-Carbono Ligases/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Carbono-Carbono Ligases/química , Escherichia coli , Glicosilação , Humanos , Insetos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Oligopeptídeos/química , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Fragmentos de Peptídeos , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA