Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 307(12): E1131-43, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25336526

RESUMO

Wilms' tumor 1 (Wt1) is a tumor suppressor gene encoding ∼24 zinc finger transcription factors. In the mammalian testis, Wt1 is expressed mostly by Sertoli cells (SCs) involved in testis development, spermatogenesis, and adult Leydig cell (ALC) steroidogenesis. Global knockout (KO) of Wt1 is lethal in mice due to defects in embryogenesis. Herein, we showed that Wt1 is involved in regulating fetal Leydig cell (FLC) degeneration and ALC differentiation during testicular development. Using Wt1(-/flox);Amh-Cre mice that specifically deleted Wt1 in the SC vs. age-matched wild-type (WT) controls, FLC-like-clusters were found in Wt1-deficient testes that remained mitotically active from postnatal day 1 (P1) to P56, and no ALC was detected at these ages. Leydig cells in mutant adult testes displayed morphological features of FLC. Also, FLC-like cells in adult mutant testes had reduced expression in ALC-associated genes Ptgds, Sult1e1, Vcam1, Hsd11b1, Hsd3b6, and Hsd17b3 but high expression of FLC-associated genes Thbs2 and Hsd3b1. Whereas serum LH and testosterone level in mutant mice were not different from controls, intratesticular testosterone level was significantly reduced. Deletion of Wt1 gene also perturbed the expression of steroidogenic enzymes Star, P450c17, Hsd3b6, Hsd3b1, Hsd17b1, and Hsd17b3. FLCs in adult mutant testes failed to convert androstenedione to testosterone due to a lack of Hsd17b3, and this defect was rescued by coculturing with fetal SCs. In summary, FLC-like cells in mutant testes are putative FLCs that remain mitotically active in adult mice, illustrating that Wt1 dictates the fate of FLC and ALC during postnatal testis development.


Assuntos
Diferenciação Celular/genética , Células Intersticiais do Testículo/fisiologia , Testículo/embriologia , Testículo/crescimento & desenvolvimento , Proteínas WT1/fisiologia , Animais , Embrião de Mamíferos , Feto/embriologia , Feto/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células de Sertoli/fisiologia , Testículo/citologia
2.
Reproduction ; 147(1): 45-52, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24129152

RESUMO

Spermatogenesis is a complex process involving the regulation of multiple cell types. As the only somatic cell type in the seminiferous tubules, Sertoli cells are essential for spermatogenesis throughout the spermatogenic cycle. The Wilms tumor gene, Wt1, is specifically expressed in the Sertoli cells of the mouse testes. In this study, we demonstrated that Wt1 is required for germ cell differentiation in the developing mouse testes. At 10 days post partum, Wt1-deficient testes exhibited clear meiotic arrest and undifferentiated spermatogonia accumulation in the seminiferous tubules. In addition, the expression of claudin11, a marker and indispensable component of Sertoli cell integrity, was impaired in Wt1(-/flox); Cre-ER(TM) testes. This observation was confirmed in in vitro testis cultures. However, the basal membrane of the seminiferous tubules in Wt1-deficient testes was not affected. Based on these findings, we propose that Sertoli cells' status is affected in Wt1-deficient mice, resulting in spermatogenesis failure.


Assuntos
Meiose/fisiologia , Células de Sertoli/metabolismo , Espermatogênese/fisiologia , Espermatogônias/metabolismo , Proteínas WT1/metabolismo , Animais , Claudinas/genética , Claudinas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas WT1/genética
3.
BMC Biol ; 11: 22, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23497137

RESUMO

BACKGROUND: The directional migration and the following development of primordial germ cells (PGCs) during gonad formation are key steps for germline development. It has been proposed that the interaction between germ cells and genital ridge (GR) somatic cells plays essential roles in this process. However, the in vivo functional requirements of GR somatic cells in germ cell development are largely unknown. RESULTS: Wt1 mutation (Wt1(R394W/R394W)) results in GR agenesis through mitotic arrest of coelomic epitheliums. In this study, we employed the GR-deficient mouse model, Wt1(R394W/R394W), to investigate the roles of GR somatic cells in PGC migration and proliferation. We found that the number of PGCs was dramatically reduced in GR-deficient embryos at embryonic day (E) 11.5 and E12.5 due to decreased proliferation of PGCs, involving low levels of BMP signaling. In contrast, the germ cells in Wt1(R394W/R394W) embryos were still mitotically active at E13.5, while all the germ cells in control embryos underwent mitotic arrest at this stage. Strikingly, the directional migration of PGCs was not affected by the absence of GR somatic cells. Most of the PGCs reached the mesenchyme under the coelomic epithelium at E10.5 and no ectopic PGCs were noted in GR-deficient embryos. However, the precise positioning of PGCs was disrupted. CONCLUSIONS: Our work provides in vivo evidence that the proliferation of germ cells is precisely regulated by GR somatic cells during different stages of gonad development. GR somatic cells are probably dispensable for the directional migration of PGCs, but they are required for precise positioning of PGCs at the final step of migration.


Assuntos
Movimento Celular , Células Germinativas/citologia , Gônadas/citologia , Gônadas/embriologia , Animais , Comunicação Celular , Contagem de Células , Proliferação de Células , Quimiocina CXCL12/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Epitélio/embriologia , Epitélio/metabolismo , Feminino , Integrina beta1/metabolismo , Masculino , Camundongos , Mitose , Mutação/genética , Processos de Determinação Sexual , Fator de Células-Tronco/metabolismo , Proteínas WT1/genética
4.
Biol Reprod ; 88(3): 56, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23325811

RESUMO

Wt1 is specifically expressed in Sertoli cells in the developing testis. A previous study has demonstrated that Wt1 plays a critical role in maintaining the integrity of testicular cords. However, the underlying mechanism is unclear. In this study, we found that the laminin-positive basal lamina lining the testicular cords was fragmented and completely absent in some areas of Wt1(-/flox); Amh-Cre testes, indicating that the testicular cord disruption can be attributed to the breakdown of the basement membrane. To explore the molecular mechanism underlying this effect, we examined the expression of cell adhesion molecules (CAMs) and testicular cord basal lamina components by real-time RT-PCR, Western blotting, and immunostaining. Compared with control testes, the expression of CAMs (such as E-cadherin, N-cadherin, claudin11, occludin, beta-catenin, and ZO-1) was not obviously altered in Wt1(-/flox); Amh-Cre testes. However, the mRNA level of Col4a1 and Col4a2 was significantly decreased in Wt1-deficient testes. Immunostaining assays further confirmed that the collagen IV protein levels were dramatically reduced in Wt1(-/flox); Amh-Cre testes. Moreover, luciferase and point mutation analyses revealed that the Col4a1 and Col4a2 promoters were additively transactivated by WT1 and SOX9. Given this finding and previous results showing that SOX9 expression declines rapidly after Wt1 deletion, we conclude that the loss of Wt1 in Sertoli cells results in the downregulation of the important basal lamina component, which in turn causes the breakdown of the basal lamina and subsequent testicular cord disruption.


Assuntos
Colágeno Tipo IV/metabolismo , Genes do Tumor de Wilms , Cordão Espermático/embriologia , Testículo/metabolismo , Animais , Membrana Basal/fisiologia , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Fatores de Transcrição SOX9/metabolismo , Testículo/embriologia , Ativação Transcricional
5.
Biol Reprod ; 89(1): 12, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23759306

RESUMO

Scrotal hypothermia is essential for normal spermatogenesis, and temporal heat stress causes a reversible disruption of the blood-testis barrier (BTB). Previous studies have shown that AR expression in primary monkey Sertoli cells (SCs) was dramatically reduced after temporary heat treatment. However, the mechanisms underlying the heat-induced reversible disruption of the BTB, including whether it is directly regulated by the AR, remain largely unknown. In this study, we demonstrated that the AR acts upstream to regulate the heat-induced reversible change in the BTB in mice. When the AR was overexpressed in SCs using an adenovirus, the heat stress-induced down-regulation of BTB-associated proteins (Zonula occludens-1 (ZO-1), N-Cadherin, E-Cadherin, α-Catenin, and ß-Catenin) was partially rescued. AR knockdown by RNAi or treatment with flutamide (an AR antagonist) in SCs inhibited the recovery of BTB-associated protein expression after 43°C heat treatment for 30 min. The results of an in vivo AR antagonist injection experiment further showed that the recovery of BTB permeability induced by temporal heat stress was regulated by the AR. Furthermore, we observed that the co-localization and interactions of partitioning-defective protein (Par) 6-Par3-aPKC-Cdc42 polarity complex components were disrupted in both AR-knockdown and heat-induced SCs. AR overexpression in SCs prevented the disruption of these protein-protein interactions after heat treatment. AR knockdown or treatment with flutamide in SCs inhibited the restoration of these protein-protein interactions after heat treatment compared with heat treatment alone. Together, these results demonstrate that the AR plays a crucial role in the heat-induced reversible change in BTB via the Par polarity complex.

6.
PLoS One ; 8(1): e53140, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23326390

RESUMO

Wt1 encodes a zinc finger nuclear transcriptional factor, which is specifically expressed in testicular Sertoli cells and knockdown of Wt1 in Sertoli cells causes male mice subfertility. However, the underlying mechanism is still unclear. In this study, we found that expression of inhibin-α is significantly reduced in Wt1-deficient Sertoli cells. Luciferase assays using the inhibin-α promoter indicated that the inhibin-α promoter is transactivated by the Wt1 A, and B isoforms (-KTS), but not the C, and D isoforms (+KTS). Analysis of the Wt1 responsive element of the inhibin-α promoter region using site-directed mutagenesis showed that the nucleotides between -58 and -49 are essential for Wt1-dependent transactivation of the inhibin-α promoter. ChIP assays indicated that Wt1 directly interacts with the inhibin-α promoter. In addition, the inhibin-α promoter is activated synergistically by Wt1 and Sf1. Mutation of the ligand binding domain (LBD) of Sf1 (residues 235-238) completely abolished the synergistic action between Wt1 and Sf1, but did not affect the physical interaction between these two proteins, suggesting that other factor(s) may also be involved in the regulation of inhibin-α in Sertoli cells. Further studies demonstrated that ß-catenin enhances the synergistic activation of Wt1 and Sf1 on the inhibin-α promoter. Given the fact that inhibin-α, a subunit of inhibin, is known to be involved in the regulation of spermatogenesis and testicular steroidogenesis, this study reveals a new regulatory mechanism of inhibin-α in Sertoli cells and also sheds light on the physiological functions of Wt1 in gonad development and spermatogenesis.


Assuntos
Regulação da Expressão Gênica , Inibinas/genética , Células de Sertoli/metabolismo , Fator Esteroidogênico 1/genética , Proteínas WT1/genética , Animais , Sequência de Bases , Sítios de Ligação/genética , Western Blotting , Linhagem Celular , Células Cultivadas , Feminino , Inibinas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mutação , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Elementos de Resposta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator Esteroidogênico 1/metabolismo , Ativação Transcricional , Proteínas WT1/metabolismo , Via de Sinalização Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA