Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 314, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849885

RESUMO

BACKGROUND: Abnormally expressed BCR/ABL protein serves as the basis for the development of chronic myeloid leukaemia (CML). The F-actin binding domain (FABD), which is a crucial region of the BCR/ABL fusion protein, is also located at the carboxyl end of the c-ABL protein and regulates the kinase activity of c-ABL. However, the precise function of this domain in BCR/ABL remains uncertain. METHODS: The FABD-deficient adenovirus vectors Ad-BCR/ABL△FABD, wild-type Ad-BCR/ABL and the control vector Adtrack were constructed, and 32D cells were infected with these adenoviruses separately. The effects of FABD deletion on the proliferation and apoptosis of 32D cells were evaluated by a CCK-8 assay, colony formation assay, flow cytometry and DAPI staining. The levels of phosphorylated BCR/ABL, p73, and their downstream signalling molecules were detected by western blot. The intracellular localization and interaction of BCR/ABL with the cytoskeleton-related protein F-actin were identified by immunofluorescence and co-IP. The effect of FABD deletion on BCR/ABL carcinogenesis in vivo was explored in CML-like mouse models. The degree of leukaemic cell infiltration was observed by Wright‒Giemsa staining and haematoxylin and eosin (HE) staining. RESULTS: We report that the loss of FABD weakened the proliferation-promoting ability of BCR/ABL, accompanied by the downregulation of BCR/ABL downstream signals. Moreover, the deletion of FABD resulted in a change in the localization of BCR/ABL from the cytoplasm to the nucleus, accompanied by an increase in cell apoptosis due to the upregulation of p73 and its downstream proapoptotic factors. Furthermore, we discovered that the absence of FABD alleviated leukaemic cell infiltration induced by BCR/ABL in mice. CONCLUSIONS: These findings reveal that the deletion of FABD diminished the carcinogenic potential of BCR/ABL both in vitro and in vivo. This study provides further insight into the function of the FABD domain in BCR/ABL.


Assuntos
Apoptose , Proliferação de Células , Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Animais , Humanos , Camundongos , Apoptose/genética , Actinas/metabolismo , Carcinogênese/genética , Domínios Proteicos , Linhagem Celular Tumoral
2.
Exp Hematol Oncol ; 11(1): 33, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624462

RESUMO

BACKGROUND: With the widespread clinical application of tyrosine kinase inhibitors (TKIs), an increasing number of chronic myeloid leukaemia (CML) patients have developed resistance or intolerance to TKIs. BCR/ABL is the oncoprotein of CML. HSP90 is an essential chaperone of BCR/ABL and plays an important role in protein folding and the function of BCR/ABL. Therefore, inhibiting the chaperone function of HSP90 may be an effective strategy for CML treatment and to overcome TKI resistance. METHODS: The effect of KW-2478 on CML cell viability, apoptosis and cell cycle progression was detected by CCK-8 assay or flow cytometry. The levels of BCR/ABL, HSP90 and other signalling proteins were detected by western blots. The mitochondrial membrane potential was detected by flow cytometry combined with JC-1 staining. The interaction between BCR/ABL and HSP90α was detected by coimmunoprecipitation. The effect of KW-2478 on BCR/ABL carcinogenesis in vivo was investigated in CML-like mouse models. RESULTS: KW-2478 inhibited growth and induced apoptosis of CML cells. KW-2478 inhibited the chaperone function of HSP90α and then weakened the BCR/ABL and MAPK signalling pathways. This treatment also caused an increase in p27 and p21 expression and a decrease in cyclin B1 expression, which led to G2/M phase arrest. The mitochondrial pathway was primarily responsible for KW-2478-induced apoptosis. KW-2478 had a synergistic effect with imatinib in growth inhibition. Notably, KW-2478 had a stronger effect on growth inhibition, apoptosis induction and cell cycle arrest of K562/G01 cells than K562 cells. KW-2478 could effectively prolong the mouse lifespan and alleviate disease symptoms in CML-like mouse models. CONCLUSIONS: This finding demonstrated that KW-2478 had anticancer properties in imatinib-sensitive and imatinib-resistant CML cells and illustrated the possible mechanisms. This study provides an alternative choice for CML treatment, especially for TKI-resistant patients with BCR/ABL amplification and TKI-intolerant patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA