Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(1): 471-479, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38116615

RESUMO

The application of selenium nanoparticle (SeNP)-based fertilizers can cause SeNPs to enter the soil environment. Considering the possible transformation of SeNPs and the species-dependent toxicity of selenium (Se), accurate analysis of SeNPs and other Se species present in the soil would help rationally assess the potential hazards of SeNPs to soil organisms. Herein, a novel method for speciation of SeNPs and other Se species in soil was established. Under the optimized conditions, SeNPs, selenite, selenate, and seleno amino acid could be simultaneously extracted from the soil with mixtures of tetrasodium pyrophosphate (5 mM) and potassium dihydrogen phosphate (1.2 µM), while inert Se species (mainly metal selenide) remained in the soil. Then, extracted SeNPs can be effectively captured by a nylon membrane (0.45 µm) and quantified by inductively coupled plasma mass spectrometry (ICP-MS). Other extracted Se species can be separated and quantified by high-performance liquid chromatography coupled with ICP-MS. Based on the difference between the total Se contents and extracted Se contents, the amount of metal selenide can be calculated. The limits of detection of the method were 0.02 µg/g for SeNPs, 0.05 µg/g for selenite, selenate, and selenocystine, and 0.25 µg/g for selenomethionine, respectively. Spiking experiments also showed that our method was applicable to real soil sample analysis. The present method contributes to understanding the speciation of Se in the soil environment and further estimating the occurrence and application risks of SeNPs.


Assuntos
Nanopartículas , Compostos de Selênio , Selênio , Selênio/análise , Ácido Selênico , Solo/química , Compostos de Selênio/química , Ácido Selenioso
2.
Anal Bioanal Chem ; 416(13): 3271-3280, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38584179

RESUMO

Accurate quantification of nano-selenium (nSe) and other ionic Se species in aquatic environments is a prerequisite for reliable estimation of their potential hazards. In this study, a micropore membrane filtration-based method followed by ICP-MS analysis was proposed for the selective concentration and determination of nSe in the water column. Polyvinylidene fluoride (PVDF) and nylon micropore filtration membranes were proven to efficiently capture nSe under optimal conditions (retention > 91.0 ± 0.87%). At the same time, ionic selenite and selenate could escape from the membranes, realizing the isolation of nSe and ionic Se species. The interference of dissolved organic matter (DOM) during separation can be resolved by adding Ca(II) ions, which can induce the formation of DOM aggregates by cation bridging effects. nSe retained on PVDF membranes could be effectively eluted with FL-70 (a powerful alkaline surfactant) aqueous solutions (0.5%, m/v) while maintaining the original size and morphology. Although nSe trapped on nylon membranes could not be easily eluted, quantification can also be achieved after membrane digestion. Speciation of ionic selenite and selenate in the filtrate was further conducted with an anion exchange column by using HPLC coupled with ICP-MS. The developed method was used to analyze Se species in six real water samples. Spiking experiments showed that the recoveries of nSe ranged from 70.2 ± 2.7% to 85.8 ± 1.3% at a spike level of 0.2 µg/L, and the recoveries of Se(IV) and Se(VI) ranged from 83.6 ± 0.5% to 101 ± 1% at a spike level of 0.55 µg/L, verifying the feasibility for the analysis of environmental water samples. This work provides possibilities to investigate the transformation and potential risks of nSe in the environment.

3.
Environ Sci Technol ; 57(32): 12010-12018, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37506359

RESUMO

Determination of microplastics and nanoplastics (MNPs), especially small MPs and NPs (<150 µm), in solid environmental matrices is a challenging task due to the formation of stable aggregates between MNPs and natural colloids. Herein, a novel method for extracting small MPs and NPs embedded in soils/sediments/sludges has been developed by combining tetramethylammonium hydroxide (TMAH) digestion with dichloromethane (DCM) dissolution. The solid samples were digested with TMAH, and the collected precipitate was washed with anhydrous ethanol to eliminate the natural organic matter. Then, the MNPs in precipitate were extracted by dissolving in DCM under ultrasonic conditions. Under the optimized digestion and extraction conditions, the factors including sizes and concentrations of MNPs showed insignificant effects on the extraction process. The feasibility of this sample preparation method was verified by the satisfactory spiked recoveries (79.6-91.4%) of polystyrene, polyethylene, polypropylene, poly(methyl methacrylate), polyvinyl chloride, and polyethylene terephthalate MNPs in soil/sediment/sludge samples. The proposed sample preparation method was coupled with pyrolysis gas chromatography-mass spectrometry to determine trace small MPs and NPs with a relatively low detection limit of 2.3-29.2 µg/g. Notably, commonly used MNPs were successfully detected at levels of 4.6-51.4 µg/g in 6 soil/sediment/sludge samples. This proposed method is promising for evaluating small solid-embedded MNP pollution.


Assuntos
Microplásticos , Plásticos , Plásticos/análise , Cromatografia Gasosa-Espectrometria de Massas , Esgotos/química , Cloreto de Metileno/análise , Solubilidade , Solo/química , Digestão
4.
J Environ Sci (China) ; 128: 45-54, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36801041

RESUMO

The removal of iodide (I-) from source waters is an effective strategy to minimize the formation of iodinated disinfection by-products (DBPs), which are more toxic than their brominated and chlorinated analogues. In this work, a nanocomposite Ag-D201 was synthesized by multiple in situ reduction of Ag-complex in D201 polymer matrix, to achieve highly efficient removal of iodide from water. Scanning electron microscope /energy dispersive spectrometer characterization showed that uniform cubic silver nanoparticles (AgNPs) evenly dispersed in the D201 pores. The equilibrium isotherms data for iodide adsorption onto Ag-D201 was well fitted with Langmuir isotherm with the adsorption capacity of 533 mg/g at neutral pH. The adsorption capacity of Ag-D201 increased with the decrease of pH in acidic aqueous solution, and reached the maximum value of 802 mg/g at pH 2. This was attributed to the oxidization of I-, by dissolved oxygen under the catalysis of AgNPs, to I2 which was finally adsorbed as AgI3. However, the aqueous solutions at pH 7 - 11 could hardly affect the iodide adsorption. The adsorption of I- was barely affected by real water matrixes such as competitive anions (SO42-, NO3-, HCO3-, Cl-) and natural organic matter, of which interference of NOM was offset by the presence of Ca2+. The proposed synergistic mechanism for the excellent performance of iodide adsorption by the absorbent was ascribed to the Donnan membrane effect caused by the D201 resin, the chemisorption of I- by AgNPs, and the catalytic effect of AgNPs.


Assuntos
Nanopartículas Metálicas , Poluentes Químicos da Água , Água , Iodetos , Poliestirenos , Prata , Nanopartículas Metálicas/química , Poluentes Químicos da Água/química , Adsorção
5.
Sci Total Environ ; 951: 175481, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147059

RESUMO

The detrimental impacts of titanium dioxide nanoparticles (TiO2NPs) on the ecosystem and organisms have aroused great public concerns. However, the information on their concentration in the real aquatic environment is still limited, hindering the rational evaluation of their potential hazards. In this study, water samples from Taihu Lake were collected in June and November 2023, to investigate the spatial distribution and temporal variations of TiO2NPs. Using phosphorylated Fe3O4 particles based magnetic solid phase extraction and ICP-MS determination, high concentrations of TiO2NPs were detected in the western and northern regions of Taihu Lake. These areas contribute to 83 % of the total runoff into the lake. Total Ti levels were typically higher in November than in June, but no marked seasonal difference was observed for TiO2NPs. Different shapes of TiO2NPs with both smooth and rough surfaces were observed in the surface water. To further distinguish whether these TiO2NPs were sourced from the natural background or anthropogenic sources, the ratios of Ti to other rare elements including Nb were calculated. In November, the Ti/Nb ratios at most sampling sites were significantly higher than those in June, indicating that a large amount of engineered TiO2NPs are discharged into Taihu Lake during the summer and autumn seasons. Our study contributes to the understanding of contamination levels, spatial distribution, and temporal variation of TiO2NPs in lake systems, and provides valuable data for their further risk assessment.

6.
Chemosphere ; 313: 137374, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36435320

RESUMO

The worldwide existing micro- and nano-plastics (MNPs) showed high sorption capacity for hydrophobic organic contaminants (HOCs), and thus leading to change of the environmental behaviors and fates of HOCs. However, there is a lack of general index for evaluating the sorption capacity of MNPs for HOCs. Herein, we investigated the sorption of chlorobenzene, naphthalene and phenanthrene to 10 MNPs of different polymer types with and without UV-aging, respectively. It was found that the sorption was well fitted by Freundlich isotherm model with coefficients R2 in the range of 0.892-1.00, and aging of most MNPs resulted in decreased sorption capacity for naphthalene and phenanthrene but slightly increased sorption capacity for chlorobenzene. More importantly, for the 8 MNPs commonly present in the environment and with measured total organic carbon (TOC) covering the range of 23.0-91.9%, the logarithm sorption constant (logKd) values of the studied HOCs positively correlated with TOC contents of MNPs, with a good determination coefficient (R2) of 0.923 for naphthalene, 0.694 for chlorobenzene, and 0.565 for phenanthrene. Our study demonstrated that the TOC content of MNPs is a good index for estimating the contribution of total MNPs to the sorption of nonpolar HOCs in the environmental media.


Assuntos
Microplásticos , Fenantrenos , Fenantrenos/química , Naftalenos , Carbono/química , Adsorção
7.
Sci Total Environ ; 832: 155046, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390378

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are the most highly concerned pollutants bound on traffic-impacted particulate matter (TIPM). The inhaled TIPM-bound PAHs risk has attracted much attention, whereas the inhalation bioaccessibility, a method to refine the exposure risk assessment, has not yet been extensively introduced in the exposure risk assessment. Thus, in vitro assays using artificial lung fluids including artificial lysosomal fluid (ALF), Gamble's solution (GS), and modified GS (MGS) were conducted to assess the inhalation bioaccessibility of USEPA 16 PAHs in TIPM collected from an expressway tunnel, the influence factors of PAHs' inhalation bioaccessibility were explored, and the exposure risk of TIPM-bound PAHs was estimated based on inhalation bioaccessibility. Results showed that the average PAHs concentrations were 30.5 ± 12.9 ng/m3, 36.2 ± 5.19 ng/m3, and 39.9 ± 4.31 ng/m3 in the tunnel inlet PM2.5, TSP, and tunnel center PM2.5, respectively. Phe, Flt, Pyr, Nap, Chr, BbF, and BkF were found as the dominant species in TSP and PM2.5, indicating a dominant contribution of PAHs from diesel-fueled vehicular emissions. The bioaccessible fractions measured for different PAH species in tunnel PM2.5 and TSP were highly variable, which can be attributed to PAHs' physicochemical properties, size, and carbonaceous materials of TIPM. The addition of Tenax into SLF as an "adsorption sink" can greatly increase PAHs' inhalation bioaccessibility, but DPPC has a limited effect on tunnel PM-bound PAHs' bioaccessibility. The incremental lifetime carcinogenic risk (ILCR) of tunnel inlet PM2.5-bound PAHs evaluated according to their total mass concentration exceeded the threshold (1.0 × 10-6) set by the USEPA, whereas the ILCRs estimated based on the inhalation bioaccessibility were far below the threshold. Hence, it is vitally important to take into consideration of pollutant's bioaccessibility to refine health risk assessment.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Pulmão/metabolismo , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco
8.
J Chromatogr A ; 1682: 463503, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36152483

RESUMO

Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) has been widely used for the detection of micro- and nanoplastics (MNPs) in the environment. However, there is a lack of thorough investigation on the effects of pyrolysis temperature and time, as well as the particle source, size and mass of MNPs on the pyrolysis efficiency and pyrolysis product distribution of MNPs. Herein, taking the common plastics polystyrene (PS) as a model, we systematically evaluated the influences of the above factors on the pyrolysis of PS MNPs. Results showed that pyrolysis temperature and time significantly affect the pyrolysis efficiency. By measuring the relative response values of the indicator compound styrene trimers to styrene monomer, the optimum condition was determined as the temperature of 510 â„ƒ and pyrolysis time longer than 18 s. Meanwhile, the mass of MNPs also affected the distribution of PS pyrolysis products. The proportions of styrene dimers and trimers increased slightly with PS MNP mass, while the source, particle size of MNPs have little effect on the pyrolysis product distribution. This work proposed a suitable pyrolysis temperature and time for the determination of PS by Py-GC/MS, which would contribute to the accurate analysis of PS MNPs in the environment.


Assuntos
Poliestirenos , Pirólise , Calefação , Microplásticos , Poliestirenos/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA