RESUMO
A mild and regiodivergent aminoalkylation of unactivated alkyl halides is disclosed via a dual photoredox/nickel catalysis. Bipyridyl-type ligands without an ortho-substituent control the site-selective coupling at the original position, while ortho-disubstituted ligands tune the site-selectivity at a remote, unprefunctionalized position. Mechanistic studies combined with DFT calculations give insight into the mechanism and the origins of the ligand-controlled regioselectivity. Notably, this redox-neutral, regiodivergent alkyl-alkyl coupling features mild conditions, broad substrate scope for both alkyl coupling partners, and excellent site-selectivity and offers a straightforward way for α-alkylation of tertiary amines to synthesize structurally diverse alkylamines and value-added amino acid derivatives.
RESUMO
A mild and site-selective hydroaminoalkylation of activated and unactivated alkenes via dual photoredox/Ni catalysis is developed. This dual catalytic strategy enables exclusive access to α-selective products, which is complementary to previously reported photocatalytic hydroaminoalkylation of activated alkenes that provides the ß-selective products. The chain-walking of a Ni-H intermediate toward a carbonyl allows for the hydroaminoalkylation of unactivated alkenes at remote sp3 C-H sites. This method tolerates a broad substrate scope of both amines and alkenes as well as providing a streamlined synthesis of value-added ß-amino acid derivatives from readily available starting materials.
Assuntos
Alcenos , Níquel , Alcenos/química , Aminas/química , Aminoácidos , Catálise , Níquel/químicaRESUMO
A method was developed for ketone synthesis via a photoredox-assisted reductive acyl cross-coupling (PARAC) using a nickel/photoredox dual-catalyzed cross-electrophile coupling of two different carboxylic acid esters. A variety of aryl, 1°, 2°, 3°-alkyl 2-pyridyl esters can act as acyl electrophiles while N-(acyloxy)phthalimides (NHPI esters) act as 1°, 2°, 3°-radical precursors. Our PARAC strategy provides an alternative and reliable way to synthesize various sterically congested 3°-3°, 3°-2°, and aryl-3° ketones under mild and highly unified conditions, which have been otherwise difficult to access. The combined experimental and computational studies identified a Ni0 /NiI /NiIII pathway for ketone formation.
RESUMO
A highly chemo- and regioselective intermolecular 1,2-aryl-aminoalkylation of alkenes by photoredox/nickel dual catalysis is described here. This three-component conjunctive cross-coupling is highlighted by its first application of primary alkyl radicals, which were not compatible in previous reports. The readily prepared α-silyl amines could be transferred to α-amino radicals by photo-induced single electron transfer step. The radical addition/cross-coupling cascade reaction proceeds under mild, base-free and redox-neutral conditions with good functional group tolerance, and importantly, provides an efficient and concise method for the synthesis of structurally valuable α-aryl substituted γ-amino acid derivatives motifs.
RESUMO
Facile access to sterically hindered α-tertiary primary amines via photocatalytic radical coupling of native C(sp3)-H substrates with N-unsubstituted ketimines is reported. LiBr was used as a hydrogen atom transfer reagent to cleave C(sp3)-H bonds to get alkyl radicals. The in situ-generated HBr can then serve as a Bronsted acid to activate N-unsubstituted ketimines readily for single-electron reduction to deliver α-amino radicals. As a consequence, radical-radical coupling affords primary amines with a congested α-tertiary substituent. This reaction is highlighted by simple and mild conditions, 100% atom-economy, and broad hydrocarbon substrate scope for benzyl ethers, cyclic ethers, benzyl alcohols, alkylarenes, and carbocycles.
RESUMO
This data article comprises collected data to verify a vibro-acoustic coupling model and raw records of optimized results on sectional geometries of two simplified sealing rubber models. The dataset is generated based on both analytical methods and numerical solutions, including Finite Element Simulation and Hybrid Finite Element - Statistic Energy Analysis Simulation. The calculations have been performed through a 2.3GHz PC with Intel Xeon Core E5-2658 v4 and 128 GB RAM in Tongji University. All the results from these data will help researchers and engineers in vibro-acoustic coupling analysis of dual-membrane or combined dual-membrane models with a sine-auxiliary function and advanced understanding of the coupling characteristics. One of the main original contributions is also to share the data sets to give the opportunity to researchers for testing and validating numerical models of the vibro-acoustic coupling problem. In addition, the optimization characteristics of sectional geometries of the sealing rubber models based on a modified simulated annealing algorithm can retain further potential analysis with the data provided. This Data in Brief article is an additional item directly alongside the following paper submitted in the Elsevier journal Applied Acoustics, "Optimal study on sectional geometry of rubber layers and cavities based on the vibro-acoustic coupling model with a sine-auxiliary function" [1], where the detailed interpretation of models and results can be found.
RESUMO
Uniaxial tensile flow properties of a duplex Ti-6.6Al-3.3Mo-1.8Zr-0.29Si alloy in a temperature range from 213 K to 573 K are investigated through crystal plasticity modelling. Experimental results indicate that the initial yield stress of the alloy decreases as the temperature increases, while its work-hardening behavior displays temperature insensitivity. Considering such properties of the alloy, the dependence of the initial critical resolved shear stress (CRSS) on temperature is taken into account in the polycrystal plasticity modelling. Good coincidence is obtained between modelling and the experimental results. The determined values of CRSS for slip systems are comparable to the published data. The proposed polycrystalline model provides an alternative method for better understanding the microstructure-property relationship of α + ß titanium alloys at different temperatures in the future.
RESUMO
The germ tube burst method (GTBM) was employed to examine karyotypes of 33 Fusarium species representative of 11 species complexes that span the phylogenetic breadth of the genus. The karyotypes revealed that the nucleolar organizing region (NOR), which includes the ribosomal rDNA region, was telomeric in the species where it was discernible. Variable karyotypes were detected in eight species due to variation in numbers of putative core and/or supernumerary chromosomes. The putative core chromosome number (CN) was most variable in the F. solani (CN = 9â12) and F. buharicum (CN = 9+1 and 18-20) species complexes. Quantitative real-time PCR and genome sequence analysis rejected the hypothesis that the latter variation in CN was due to diploidization. The core CN in six other species complexes where two or more karyotypes were obtained was less variable or fixed. Karyotypes of 10 species in the sambucinum species complex, which is the most derived lineage of Fusarium, revealed that members of this complex possess the lowest CN in the genus. When viewed in context of the species phylogeny, karyotype evolution in Fusarium appears to have been dominated by a reduction in core CN in five closely related complexes that share a most recent common ancestor (tricinctum and incarnatum-equiseti CN = 8-9, chlamydosporum CN = 8, heterosporum CN = 7, sambucinum CN = 4-5) but not in the sister to these complexes (nisikadoi CN = 11, oxysporum CN = 11 and fujikuroi CN = 10-12). CN stability is best illustrated by the F. sambucinum subclade, where the only changes observed since it diverged from other fusaria appear to have involved two independent putative telomere to telomere fusions that reduced the core CN from five to four, once each in the sambucinum and graminearum subclades. Results of the present study indicate a core CN of 4 may be fixed in the latter subclade, which is further distinguished by the absence of putative supernumerary chromosomes. Karyotyping of fusaria in the not too distant future will be done by whole-genome sequencing such that each scaffold represents a complete chromosome from telomere to telomere. The CN data presented here should be of value to assist such full genome assembling.