RESUMO
The stacking of two-dimensional (2D) materials is a highly effective approach in the design of high-performance optoelectronic devices. In this study, we propose a novel Janus monolayer-based 2D/2D van der Waals heterostructure (vdWH) called SbTeBr/SbSI. Starting from its most stable binding configuration, we systematically examined its electronic, optical, mechanical and dynamical properties. The SbTeBr/SbSI vdWH exhibits a type II band arrangement, with an indirect bandgap of 1.28 eV and strong light absorption capabilities in the visible range, achieving an absorption coefficient of 4 × 105 cm-1. These desirable properties suggest that SbTeBr/SbSI holds promise as a material for solar cells, potentially achieving a power conversion efficiency of 8.3%. The dipole-induced electric field in the SbTeBr/SbSI vdWH leads to significant differences in the mobilities of different carriers, which is a critical aspect in suppressing the recombination of photogenerated carriers. Additionally, according to the simulations of nonadiabatic molecular dynamics, a long electron-hole recombination time of 133 ps is predicted. Thus, the SbTeBr/SbSI heterostructure enables efficient charge separation, demonstrating its potential as a high-performance optoelectronic material.
RESUMO
Traditionally, methods designed to investigate the effects of the geometric phase in reaction dynamics, such as including a vector potential in the nuclear Hamiltonian, necessitate the explicit manipulation of geometric phase-related terms in the adiabatic representation. In contrast, the diabatic representation provides an alternative approach that implicitly addresses the geometric phase and nonadiabatic issues. In this study, we present a method to directly extract the phase information on the geometric phase from the ensemble of interdependent trajectories utilizing the diabatic representation. This approach presents a direct means of quantitatively examining the geometric phase effects in dynamics and has the potential to yield observables suitable for experimental measurement.
RESUMO
We theoretically study the decoherence of a two-level quantum system coupled to noisy environments exhibiting linear and quadratic fluctuations within the framework of a stochastic Liouville equation. It is shown that the intrinsic energy levels of the quantum system renormalize under either the linear or quadratic influence of the environmental noise. In the case of quadratic dependence, the renormalization of the energy levels of the system emerges even if the environmental noise exhibits stationary statistical properties. This is in contrast to the case under linear influence, where the intrinsic energy levels of the system renormalize only if the environmental noise displays nonstationary statistics. We derive the analytical expressions of the decoherence function in the cases where the fluctuation of the frequency difference depends linearly and quadratically on the nonstationary Ornstein-Uhlenbeck noise (OUN) and random telegraph noise (RTN) processes, respectively. In the case of the linear dependence of the OUN, the environmental nonstationary statistical property can enhance the dynamical decoherence. However, the nonstationary statistics of the environmental noise can suppress the quantum decoherence in this case under the quadratic influence of the OUN. In the presence of the RTN, the quadratic influence of the environmental noise does not give rise to decoherence but only causes a determinate frequency renormalization in dynamical evolution. The environmental nonstationary statistical property can suppress the quantum decoherence of the case under the linear influence of the RTN.
RESUMO
Antibiotics are currently used for the treatment of Helicobacter pylori (H. pylori), which is confirmed to be the major cause of gastric disorders. However, the long-term consumption of antibiotics has already caused antibiotic resistance and side effects in vivo. Therefore, there is an emerging need for searching for safe and effective anti-H. pylori agents. Inspired by the excellent bioactivities of cinnamic acid, a series of cinnamic acid derivatives (compounds 1-30) were synthesized and determined for H. pylori inhibition. The initial screening revealed that compound 23, a 2,4-dinitro cinnamic acid derivative containing 4-methoxyphenol, showed excellent H. pylori inhibition with an MIC value of 4 µM. Further studies indicated that compound 23 showed anti-bacterial activity and had a bactericidal effect on H. pylori due to the destruction of the bacterial structure. Molecular docking analysis revealed that the 2,4-dinitro groups in cinnamic acid moiety formed hydrogen bonding with amino acid residues in an active pocket of H. pylori protein. Interestingly, the ester moiety fitted into the hydrophobic pocket, attaining additional stability to compound 23. Above all, the present study reveals that compound 23 could be considered a promising anti-H. pylori agent to treat H. pylori causing gastritis.
Assuntos
Antibacterianos , Cinamatos , Helicobacter pylori , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Helicobacter pylori/efeitos dos fármacos , Cinamatos/química , Cinamatos/farmacologia , Cinamatos/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , HumanosRESUMO
Previous studies have shown that peripheral nerve injury can lead to abnormal dendritic spine remodeling in spinal dorsal horn neurons. Inhibition of abnormal dendritic spine remodeling can relieve neuropathic pain. Electroacupuncture (EA) has a beneficial effect on the treatment of neuropathic pain, but the specific mechanism remains unclear. Evidence has shown that slit-robo GTPase activating protein 3 (srGAP3) and Rho GTPase (Rac1) play very important roles in dendritic spine remodeling. Here, we used srGAP3 siRNA and Rac1 activator CN04 to confirm the relationship between SrGAP3 and Rac1 and their roles in improving neuropathic pain with EA. Spinal nerve ligation (SNL) was used as the experimental model, and thermal withdrawal latency (TWL), mechanical withdrawal threshold (MWT), Western blotting, immunohistochemistry and Golgi-Cox staining were used to examine changes in behavioral performance, protein expression and dendritic spines. More dendritic spines and higher expression levels of srGAP3 were found in the initial phase of neuropathic pain. During the maintenance phase, dendritic spines were more mature, which was consistent with lower expression levels of srGAP3 and higher expression levels of Rac1-GTP. EA during the maintenance phase reduced the density and maturity of dendritic spines of rats with SNL, increased the levels of srGAP3 and reduced the levels of Rac1-GTP, while srGAP3 siRNA and CN04 reversed the therapeutic effects of EA. These results suggest that dendritic spines have different manifestations in different stages of neuropathic pain and that EA may inhibit the abnormal dendritic spine remodeling by regulating the srGAP3/Rac1 signaling pathway to alleviate neuropathic pain.
Assuntos
Eletroacupuntura , Neuralgia , Animais , Ratos , Espinhas Dendríticas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Neuralgia/metabolismo , Neuralgia/terapia , Proteínas rac1 de Ligação ao GTP/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Nervos Espinhais/metabolismoRESUMO
We consider the first detection problem for a one-dimensional quantum walk with repeated local measurements. Employing the stroboscopic projective measurement protocol and the renewal equation, we study the effect of tunneling on the detection time. Specifically, we study the continuous-time quantum walk on an infinite tight-binding lattice for two typical situations with physical reality. The first is the case of a quantum walk in the absence of tunneling with a Gaussian initial state. The second is the case where a barrier is added to the system. It is shown that the transition of the decay behavior of the first detection probability can be observed by modifying the initial condition, and in the presence of a tunneling barrier, the particle can be detected earlier than the impurity-free lattice. This suggests that the evolution of the walker is expedited when it tunnels through the barrier under repeated measurement. The first detection tunneling time is introduced to investigate the tunneling time of the quantum walk. In addition, we analyze the critical transitive point by deriving an asymptotic formula.
RESUMO
Developing van der Waals (vdW) heterostructures is an excellent approach for optimizing exceptional optoelectronic and photocatalytic properties of materials; therefore, researching the interface dynamics of charge carriers at the two-dimensional vdW heterojunction is of great significance. In this work, we perform time-dependent ab initio non-adiabatic molecular dynamics simulations to study the dynamics of charge transfer at the B4C3/g-C3N4 heterostructure. The simulations show that the charge transfer between B4C3/g-C3N4 layers is mainly caused by the non-adiabatic mechanism. The non-adiabatic mechanism leads to a higher charge-transfer efficiency and slows down the process of interlayer electron-hole recombination, thereby promoting the separation of photogenerated electron-hole pairs. Our investigation provides essential insights into understanding the dynamics of charge transfer for the B4C3/g-C3N4 heterostructure, which provides guidance for photocatalytic water splitting and optoelectrical applications.
RESUMO
In this work, we investigate the witnessing of the localization of quantum states through quantum speed limits (QSLs) in a two-level driven avoided-level crossing system. As the characteristic natures of the localized quantum states, the QSL presents the periodic oscillations and coherence. The coherence partition of QSL is much bigger than the population partition of QSL. Our study gives us the possibilities to manipulate dynamics of quantum states locally by employing the coherent destruction of tunneling, which is significant in quantum information process. In addition, we analyze the effects of the rotating-wave approximation and the generalized Van Vleck approach on QSL and show that they wipe out the quantum coherence.
RESUMO
The quantum speed limit is important in determining the minimum evolution time of a quantum system, and thus is essential for quantum community. In this Letter, we derive a novel unified quantum speed limit bound for Hermitian and non-Hermitian quantum systems. The bound is quantified by the changing rate of phase of the quantum system, which represents the transmission mode of the quantum states over their evolution. The bound leads to further insights beyond the previous bounds on concrete evolution modes of the quantum system, such as horizontal or parallel transition or horizontal joining of the two quantum states in Hilbert space. The bound is linked to the feasibility of the evolutions of the state vectors, and provides a tighter upper bound. In addition, the generalized Margolus-Levitin bound is discussed.
RESUMO
As the infection by Helicobacter pylori (H. pylori, HP) remains for a lifetime and may induce diseases such as gastric cancer, it is vital to detect and diagnose it. A new non-invasive indirect enzyme-linked immunosorbent assay (iELISA) method based on nano-flowers (NFs) is very advantageous for the sensitive detection of HP. Furthermore, the established iELISA method based on the organic-inorganic bifunctional hybrid nano-flowers including rabbit polyclonal antibody of HP labeled with peroxidase from horseradish (R-HP-Ab-HRP@Cu2+ NFs) showed linearity with HP at a concentration of 0-105 CFU mL-1 (R2 = 0.9997). Moreover, the limit of detection (LOD) reached 50 CFU mL-1, and not only was the detection sensitivity 20 times higher than that based on rabbit polyclonal antibody of HP labeled with peroxidase from horseradish (R-HP-Ab-HRP) but also the stability of R-HP-Ab-HRP in NFs was improved. In addition, the OD450 nm value was still linearly related to the concentration of HP at a range of 0-105 CFU mL-1 (R2 = 0.9952) with a LOD of 50 CFU mL-1 in an artificial saliva system. This study provided a sensitive, low-cost and convenient method for the non-invasive detection of HP.
Assuntos
Helicobacter pylori , Neoplasias Gástricas , Animais , Anticorpos , Ensaio de Imunoadsorção Enzimática , Limite de Detecção , CoelhosRESUMO
During the outbreak of the novel coronavirus pneumonia (COVID-19), there is a huge demand for medical masks. A mask manufacturer often receives a large amount of orders that must be processed within a short response time. It is of critical importance for the manufacturer to schedule and reschedule mask production tasks as efficiently as possible. However, when the number of tasks is large, most existing scheduling algorithms require very long computational time and, therefore, cannot meet the needs of emergency response. In this paper, we propose an end-to-end neural network, which takes a sequence of production tasks as inputs and produces a schedule of tasks in a real-time manner. The network is trained by reinforcement learning using the negative total tardiness as the reward signal. We applied the proposed approach to schedule emergency production tasks for a medical mask manufacturer during the peak of COVID-19 in China. Computational results show that the neural network scheduler can solve problem instances with hundreds of tasks within seconds. The objective function value obtained by the neural network scheduler is significantly better than those of existing constructive heuristics, and is close to those of the state-of-the-art metaheuristics whose computational time is unaffordable in practice.
RESUMO
We derive a distinct bound of the quantum speed limit for a non-Hermitian quantum system by employing the gauge invariant and geometric natures of quantum mechanics. The bound is of geometric properties since it relates to the geometric phase of the quantum system, and it is tighter than the Mandelstam-Tamm and Margolus-Levitin bounds in some cases. Also, by making the geodesic assumption, the analog of the Margolus-Levitin bound is derived for the time-dependent (non-)Hermitian quantum system. These two bounds reflect the impacts of the transmission modes of the state vectors on the evolution path in the manifold.
RESUMO
We investigate theoretically the stability of the wetting property, i.e., the contact angle values, as a function of the temperature. We find that the estimated temperature coefficient of the contact angle for the water droplets on an ordered water monolayer on a 100 surface of face-center cubic (FCC) is about one order of magnitude larger than that on a hydrophobic hexagonal surface in the temperature range between 290 K and 350 K, using molecular dynamics simulations. As temperature rises, the number of hydrogen bonds between the ordered water monolayer and the water droplet will increase, which therefore enhances the hydrophilicity of the ordered water monolayer at the FCC model surface. Our work thus provides an easily controllable and reversible way to control the degree of hydrophobicity of various solid surfaces exhibiting a similar wetting property of water droplets on the ordered water monolayer as such particular FCC (100) surfaces.
RESUMO
A dynamic pump control scheme is proposed to manipulate the predissociation process of NaI molecules in different reaction channels. A linearly chirped pulse is used to excite the NaI molecule, and a time-delayed infrared pulse is employed to modify the molecular potentials in the coupling zone. The predissociation branching ratio of the product from two channels can be controlled by tuning the chirp rate with a proper range of delay times. Furthermore, an additional ultrafast photoionization step is adopted to monitor the wave packet evolution and probe the possible modifications of the electronic potential under the influence of a chirped pump field to reveal the physical mechanism behind the control. Aulter-Townes splitting is observed at a proper chirp rate, and the dressed-state population can be controlled via pulse chirping.
RESUMO
As the most important component of deep red pigments, alkannin is investigated theoretically in detail based on time-dependent density functional theory (TDDFT) method. Exploring the dual intramolecular hydrogen bonds (O1-H2···O3 and O4-H5···O6) of alkannin, we confirm the O1-H2···O3 may play a more important role in the first excited state than the O4-H5···O6 one. Infrared (IR) vibrational analyses and subsequent charge redistribution also support this viewpoint. Via constructing the S1-state potential energy surface (PES) and searching transition state (TS) structures, we illuminate the excited state double proton transfer (ESDPT) mechanism of alkannin is the stepwise process that can be first launched by the O1-H2···O3 hydrogen bond wire in gas state, acetonitrile (CH3CN) and cyclohexane (CYH) solvents. We present a novel mechanism that polar aprotic solvents can contribute to the first-step proton transfer (PT) process in the S1 state, and nonpolar solvents play important roles in lowering the potential energy barrier of the second-step PT reaction.
RESUMO
We theoretically investigate the non-Markovian dynamical decoherence of a quantum system coupled to nonequilibrium environments with nonstationary statistical properties. We show the time evolution of the decoherence factor in real-imaginary space to study the environment-induced energy renormalization and backaction of coherence which are associated with the unitary and nonunitary parts of the quantum master equation, respectively. It is also shown that the nonequilibrium decoherence dynamics displays a transition between Markovian and non-Markovian and the transition boundary depends on the environmental parameters. The results are helpful for further understanding non-Markovian dynamics and coherence backaction on an open quantum system from environments.
RESUMO
Mid-infrared (MIR, 2-20â µm) second-order nonlinear optical (NLO) materials with outstanding performances are of great importance in laser science and technology. However, the enormous challenge to design and synthesize an excellent MIR NLO material lies in achieving simultaneously a strong second harmonic generation (SHG) response [dij >0.6 × AgGaS2 (AGS)] and wide band gap (Eg >3.5â eV). Herein three new MIR NLO materials, AZn4 Ga5 S12 (A=K, Rb, Cs) are reported, which crystallize in the KCd4 Ga5 S12 -type structure and adopt a 3D diamond-like framework (DLF) consisting of MS4 (M=Zn/Ga) tetrahedra; achieving the desired balance with strong powder SHG response (1.2-1.4 × AGS) and wide band gap (Eg ≈3.65â eV). Moreover, they also show large laser induced damage thresholds (LIDTs, 36 × AGS), a wide range of optical transparency (0.4-25â µm) and ultrahigh thermal stability (up to 1400â K). Upon analyzing the structure-property relationship of AXII4 XIII5 Q12 family, these 3D DLF structures can be used as a highly versatile and tunable platform for designing excellent MIR NLO materials.
RESUMO
Based on molecular dynamics simulations, we found a nonmonotonic relationship between the contact angle of water droplets and the surface polarity on a solid surface with specific hexagonal charge patterns at room temperature. The contact angle firstly decreases and then increases as polarity (denoted as charge q) increases from 0 e to 1.0 e with a vertex value of q = 0.5 e. We observed a different wetting behavior for a water droplet on a conventional nonwetted solid surface when q ≤ 0.5 e, and a water droplet on an ordered water monolayer adsorbed on a highly polar solid surface when q > 0.5 e. The solid-water interaction, density of water, hydrogen bonds, and water structures were analyzed. Remarkably, there was up to six times difference in the solid-water interactions despite the same value of the apparent contact angle values.
RESUMO
In this work, we theoretically investigate the sequential excited state double proton transfer (ESDPT) mechanism of a representative intramolecular hydroxyl (OH)-type hydrogen molecule 2,2'-bipyridyl-3,3'-diol (BP(OH)2). We mainly adopt three kinds of different polar solvents (nonpolar cyclohexane (CYH), polar acetonitrile (ACN), and moderate chloroform (CHCl3)) to explore solvent effects on this system. Two intramolecular hydrogen bonds of BP(OH)2 are testified to be strengthened in the S1 state, which provides possibility for ESDPT process. Explorations of charge redistribution and potential energy surfaces (PESs) reveal ESDPT process. Searching transition state (TS) structures in different polar aprotic solvents, we successfully regulate and control the stepwise ESDPT behaviors of BP(OH)2 through solvent polarity.
RESUMO
The histone methyltransferase MLL1 has been linked to translocation-associated gene fusion in childhood leukemias and is an attractive drug target. High-throughput biochemical analysis of MLL1 methyltransferase activity requires the production of at least a trimeric complex of MLL1, RbBP5 and WDR5 to elicit robust activity. Production of trimeric and higher order MLL1 complexes in the quantities and reproducibility required for high-throughput screening presents a significant impediment to MLL1 drug discovery efforts. We present here a small molecule fluorescent ligand (FL-NAH, 6) that is able to bind to the S-adenosylmethionine (SAM) binding site of MLL1 in a manner independent of the associated complex members. We have used FL-NAH to develop a fluorescence polarization-based SAM displacement assay in a 384-well format targeting the MLL1 SET domain in the absence of associated complex members. FL-NAH competes with SAM and is displaced from the MLL1 SET domain by other SAM-binding site ligands with Kdisp values similar to the higher-order complexes, but is unaffected by the H3 peptide substrate. This assay enables screening for SAM-competitive MLL1 inhibitors without requiring the use of trimeric or higher order MLL1 complexes, significantly reducing screening time and cost.