Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Med ; 30(1): 192, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39468431

RESUMO

BACKGROUND: Esophageal Squamous Cell Carcinoma (ESCC) remains a predominant health concern in the world, characterized by high prevalence and mortality rates. Advances in single-cell transcriptomics have revolutionized cancer research by enabling a precise dissection of cellular and molecular diversity within tumors. OBJECTIVE: This study aims to elucidate the cellular dynamics and molecular mechanisms in ESCC, focusing on the transcriptional influence of STAT3 (Signal Transducer and Activator of Transcription 3) and its interaction with LHPP, thereby uncovering potential therapeutic targets. METHODS: Single-cell RNA sequencing was employed to analyze 44,206 cells from tumor and adjacent normal tissues of ESCC patients, identifying distinct cell types and their transcriptional shifts. We conducted differential gene expression analysis to assess changes within the tumor microenvironment (TME). Validation of key regulatory interactions was performed using qPCR in a cohort of 21 ESCC patients and further substantiated through experimental assays in ESCC cell lines. RESULTS: The study revealed critical alterations in cell composition and gene expression across identified cell populations, with a notable shift towards pro-tumorigenic states. A significant regulatory influence of STAT3 on LHPP was discovered, establishing a novel aspect of ESCC pathogenesis. Elevated levels of STAT3 and suppressed LHPP expression were validated in clinical samples. Functional assays confirmed that STAT3 directly represses LHPP at the promoter level, and disruption of this interaction by promoter mutations diminished STAT3's repressive effect. CONCLUSION: This investigation underscores the central role of STAT3 as a regulator in ESCC, directly impacting LHPP expression and suggesting a regulatory loop crucial for tumor behavior. The insights gained from our comprehensive cellular and molecular analysis offer a deeper understanding of the dynamics within the ESCC microenvironment. These findings pave the way for targeted therapeutic interventions focusing on the STAT3-LHPP axis, providing a strategic approach to improve ESCC management and prognosis.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição STAT3 , Análise de Célula Única , Microambiente Tumoral , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Análise de Célula Única/métodos , Microambiente Tumoral/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Transcriptoma , Progressão da Doença
2.
Environ Toxicol ; 39(10): 4744-4753, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39162372

RESUMO

This study explores the molecular interplay between systemic lupus erythematosus (SLE) and osteoporosis (OP), aiming to uncover shared gene signatures and pathways for better treatment approaches. Leveraging microarray data from the Gene Expression Omnibus (GEO) database, we employed weighted gene coexpression network analysis to identify coexpression modules in SLE and OP, with subsequent protein-protein interaction analysis clarifying the connections among shared genes. Key genes were pinpointed using CytoHubba and random forest algorithms, validated across independent GEO datasets, and further analyzed through gene set enrichment analysis (GSEA) and immune infiltration studies. We discovered two highly correlated modules in SLE and OP, isolating 30 shared genes and identifying GBP1, SOCS1, IFI16, and XAF1 as central to both conditions. Notably, XAF1 and GBP1 mRNA levels were significantly elevated in the peripheral blood of SLE patients compared with healthy and RA counterparts, underscoring their potential as biomarkers. GSEA and immune infiltration analyses indicated pronounced immune and inflammatory responses, especially in interferon signaling pathways, implicating these core-shared gene networks in the diseases' pathogenesis. The findings highlight the involvement of GBP1, SOCS1, IFI16, and XAF1 in SLE with concurrent OP and suggest that targeting immune and inflammatory responses, particularly through interferon pathways, may offer therapeutic promise for these intertwined conditions.


Assuntos
Lúpus Eritematoso Sistêmico , Osteoporose , Humanos , Lúpus Eritematoso Sistêmico/genética , Osteoporose/genética , Redes Reguladoras de Genes , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteínas de Ligação ao GTP/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Perfilação da Expressão Gênica
3.
Environ Toxicol ; 39(6): 3341-3355, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38440848

RESUMO

BACKGROUND: Sepsis remains a crucial global health issue characterized by high mortality rates and a lack of specific treatments. This study aimed to elucidate the molecular mechanisms underlying sepsis and to identify potential therapeutic targets and compounds. METHODS: High-throughput sequencing data from the GEO database (GSE26440 as the training set and GSE13904 and GSE32707 as the validation sets), weighted gene co-expression network analysis (WGCNA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, alongside a combination of PPI and machine learning methods (LASSO and SVM) were utilized. RESULTS: WGCNA identified the black module as positively correlated, and the green module as negatively correlated with sepsis. Further intersections of these module genes with age-related genes yielded 57 sepsis-related genes. GO and KEGG pathway enrichment analysis, PPI, LASSO, and SVM selected six hub aging-related genes: BCL6, FOS, ETS1, ETS2, MAPK14, and MYC. A diagnostic model was constructed based on these six core genes, presenting commendable performance in both the training and validation sets. Notably, ETS1 demonstrated significant differential expression between mild and severe sepsis, indicating its potential as a biomarker of severity. Furthermore, immune infiltration analysis of these six core genes revealed their correlation with most immune cells and immune-related pathways. Additionally, compounds were identified in the traditional Chinese medicine Danshen, which upon further analysis, revealed 354 potential target proteins. GO and KEGG enrichment analysis of these targets indicated a primary enrichment in inflammation and immune-related pathways. A Venn diagram intersects these target proteins, and our aforementioned six core genes yielded three common genes, suggesting the potential efficacy of Danshen in sepsis treatment through these genes. CONCLUSIONS: This study highlights the pivotal roles of age-related genes in the molecular mechanisms of sepsis, offers potential biomarkers, and identifies promising therapeutic compounds, laying a robust foundation for future studies on the treatment of sepsis.


Assuntos
Envelhecimento , Biomarcadores , Sepse , Sepse/tratamento farmacológico , Sepse/genética , Humanos , Biomarcadores/metabolismo , Aprendizado de Máquina , Redes Reguladoras de Genes/efeitos dos fármacos , Perfilação da Expressão Gênica , Ontologia Genética , Bases de Dados Genéticas
4.
Am J Respir Cell Mol Biol ; 59(3): 306-319, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29652517

RESUMO

Cigarette smoking is acknowledged as the major risk factor of pulmonary fibrosis. Angiotensin (Ang) II has been reported to aggravate smoking-induced lung fibrosis, whereas the effect of Ang-(1-7) on smoking-related lung fibrosis remains unknown. The autophagy, being activated by reactive oxygen species (ROS), is identified as a novel mechanism of pulmonary fibrosis. However, whether autophagy is involved in regulation of smoking-induced lung fibrosis still needs investigation. Here, we aim to investigate the effect of Ang-(1-7) on smoking-related lung fibrosis by the regulation of autophagy and ROS. In vivo, Ang-(1-7) was constantly infused into passive smoking rats for 8 weeks. In vitro, primary lung fibroblasts were pretreated with antioxidant, nicotinamide adenine dinucleotide phosphate reduced oxidase (NOX) 4 siRNA, or light chain (LC) 3B siRNA before exposure to cigarette smoke extract (CSE). GFP-mCherry red fluorescent protein-LC3 advenovirus was introduced to evaluate the autophagic flux in cells. We found that Ang-(1-7) reduced hydrogen peroxide (H2O2) concentration, protein levels of NOX4, and autophagy impairment, as well as improving lung fibrosis induced by smoking stimulation in vivo. In vitro, CSE treatment elevated NOX4 protein expression and ROS production, resulting in the accumulation of impaired autophagosomes in fibroblasts. LC3B depletion enhanced CSE-induced collagen synthesis. Treatment with antioxidants or NOX4 siRNA inhibited CSE-induced insufficient autophagic flux and collagen production. In contrast, the action of Ang-(1-7) opposed the effects of CSE. In conclusion, Ang-(1-7) improves smoking-induced pulmonary fibrosis via attenuating the impaired autophagy caused by NOX4-dependent ROS in vivo and in vitro.


Assuntos
Angiotensinas/metabolismo , Fumar Cigarros/efeitos adversos , Fibroblastos/metabolismo , NAD/metabolismo , Fibrose Pulmonar/induzido quimicamente , Animais , Bleomicina/farmacologia , Colágeno Tipo I/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Fragmentos de Peptídeos/metabolismo , Fibrose Pulmonar/patologia , Ratos Wistar
5.
Front Immunol ; 15: 1470842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39430765

RESUMO

Sepsis, characterized by a widespread and dysregulated immune response to infection leading to organ dysfunction, presents significant challenges in diagnosis and treatment. In this study, we investigated 203 coagulation-related genes in sepsis patients to explore their roles in the disease. Through differential gene expression analysis, we identified 20 genes with altered expression patterns. Subsequent correlation analysis, visualized through circos plots and heatmaps, revealed significant relationships among these genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that these genes are involved in immune response activation, coagulation, and immune receptor activity. Disease Ontology (DO) enrichment analysis further linked these genes to autoimmune hemolytic anemia and tumor-related signaling pathways. Additionally, the CIBERSORT analysis highlighted differences in immune cell composition in sepsis patients, revealing an increase in neutrophils and monocytes and a decrease in inactive NK cells, CD8 T cells, and B cells. We employed machine learning techniques, including random forest and SVM, to construct a diagnostic model, identifying FCER1G and FYN as key biomarkers. These biomarkers were validated through their expression levels and ROC curve analysis in an independent validation cohort, demonstrating strong diagnostic potential. Single-cell analysis from the GSE167363 dataset further confirmed the distinct expression profiles of these genes across various cell types, with FCER1G predominantly expressed in monocytes, NK cells, and platelets, and FYN in CD4+ T cells and NK cells. Enrichment analysis via GSEA and ssGSEA revealed that these genes are involved in critical pathways, including intestinal immune networks, fatty acid synthesis, and antigen processing. In conclusion, our comprehensive analysis identifies FCER1G and FYN as promising biomarkers for sepsis, providing valuable insights into the molecular mechanisms of this complex condition. These findings offer new avenues for the development of targeted diagnostic and therapeutic strategies in sepsis management.


Assuntos
Biomarcadores , Coagulação Sanguínea , Sepse , Humanos , Sepse/imunologia , Sepse/genética , Sepse/diagnóstico , Perfilação da Expressão Gênica , Transdução de Sinais , Ontologia Genética , Transcriptoma , Aprendizado de Máquina , Regulação da Expressão Gênica , Biologia Computacional/métodos
6.
World J Gastrointest Oncol ; 16(10): 4194-4208, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39473951

RESUMO

BACKGROUND: The clinical effects and detailed roles of long non-coding RNA (LncRNA) steroid receptor RNA activator 1 (SRA1) in esophageal squamous cell carcinoma (ESCC) remain ambiguous. In the present study, the complementary sites between lncRNA SRA1, miRNA-363-5p, and phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) predicted via bioinformatics analysis stimulated us to hypothesize that miRNA-363-5p/LHPP axis might be required for SRA1-mediated ESCC progression. AIM: To investigate the molecular events of SRA1 in the malignant behavior in ESCC. METHODS: Thirty-eight ESCC tissues and paired adjacent normal tissues were acquired. SRA1 expression was detected in ESCC tissues and cell lines using quantitative reverse transcription-polymerase chain reaction. Cell counting Kit-8 assay, transwell invasion assay, glycolysis assay, and xenograft tumor model were performed to address the malignant biological behaviors of ESCC cells after the introduction of SRA1. The t-test and the χ 2 test were used for comparison between groups. Survival curve analysis was performed using the Kaplan-Meier method. RESULTS: SRA1 downregulation was identified in ESCC. ESCC patients exhibiting a low SRA1 expression faced shorter overall survival than those with a high SRA1 expression. The introduction of SRA1 inhibited cell proliferation, glucose uptake, and lactate production in ESCC. In vivo, the growth of ESCC was hindered by SRA1 overexpression. Then, SRA1 overexpresses the LHPP by inhibiting miRNA-363-5p. Lastly, the introduction of small interfering RNA si-LHPP or miRNA-363-5p mimic could abrogate the inhibition roles triggered by SRA1. CONCLUSION: SRA1 inhibits the oncogenicity of ESCC via miRNA-363-5p/LHPP axis. The SRA1/miRNA-363-5p/LHPP pathway may be a therapeutic target for ESCC.

7.
Open Med (Wars) ; 19(1): 20240946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584841

RESUMO

Esophageal squamous cell carcinoma (ESCC), a highly aggressive subtype of esophageal cancer, is characterized by late-stage diagnosis and limited treatment options. Recent advancements in transcriptome sequencing technologies have illuminated the molecular intricacies of ESCC tumors, revealing metabolic reprogramming as a prominent feature. Specifically, the Warburg effect, marked by enhanced glycolysis, has emerged as a hallmark of cancer, offering potential therapeutic targets. In this study, we comprehensively analyzed bulk RNA-seq data from ESCC patients, uncovering elevated SRA1 expression in ESCC development and a poorer prognosis. Silencing of SRA1 led to a modulation of glycolysis-related products and a shift in PKM2 expression. Our findings shed light on the intricate molecular landscape of ESCC, highlighting SRA1 as a potential therapeutic target to disrupt glycolysis-dependent energy production. This metabolic reprogramming may hold the key to innovative treatment strategies for ESCC, ultimately improving patient outcomes.

8.
Respir Med ; 216: 107322, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37302423

RESUMO

BACKGROUND: Some patients with dermatomyositis (DM) can develop rapidly progressive interstitial lung disease (RPILD) that is resistant to treatment and life-threatening. Convenient and practical predictive factors for the development of RPILD are currently lacking. We aimed to identify independent risk factors for RPILD in patients with DM. METHODS: A total of 71 patients with DM admitted to our hospital between July 2018 and July 2022 were retrospectively reviewed. Risk factors to predict RPILD were identified by univariate and multivariate regression analyses, and significant variates for RPILD were included to establish a risk model. RESULTS: Multivariate regression analysis revealed that the risk of RPILD was significantly associated with serum IgA levels. The area under the risk model curve, established by IgA levels combined with other independent predictors including the anti-melanoma differentiation-associated gene 5 (MDA5) antibody, fever, and C-reactive protein, was 0.935 (P < 0.001). CONCLUSION: A higher serum IgA level was identified as an independent risk factor for RPILD in patients with DM.


Assuntos
Dermatomiosite , Doenças Pulmonares Intersticiais , Humanos , Dermatomiosite/complicações , Estudos Retrospectivos , Helicase IFIH1 Induzida por Interferon , Doenças Pulmonares Intersticiais/complicações , Autoanticorpos , Imunoglobulina A , Progressão da Doença , Prognóstico
9.
Discov Oncol ; 14(1): 135, 2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37481739

RESUMO

Cuproptosis is a recently described copper-dependent cell death pathway. Consequently, there are still few studies on lung adenocarcinoma (LUAD)-related cuproptosis, and we aimed to deepen in this matter. In this study, data from 503 patients with lung cancer from the TCGA-LUAD cohort data collection and 11 LUAD single-cells from GSE131907 as well as from 10 genes associated with cuproptosis were analyzed. The AUCell R package was used to determine the copper-dependent cell death pathway activity for each cell subpopulation, calculate the CellChat score, and display cell communication for each cell subpopulation. The PROGENy score was calculated to show the scores of tumor-related pathways in different cell populations. GO and KEGG analyses were used to calculate pathway activity. Univariate COX and random forest analyses were used to screen prognosis-associated genes and construct models. The ssGSEA and xCell algorithms were used to calculate the immunocyte infiltration score. Based on data from the GDSC database, the drug sensitivity score was calculated using oncoPredict. Finally, in vitro experiments were performed to determine the role of TLE1, the most important gene in the prognostic model. The 11 LUAD single-cell samples were classified into 8 different cell populations, from which epithelial cells showed the highest copper-dependent cell death pathway activity. Epithelial cell subsets were significantly positively correlated with MAKP, hypoxia, and other pathways. In addition, cell subgroup communication showed highly active collagen and APP pathways. Using the Findmark algorithm, differentially expressed genes (DEGs) between epithelial and other cell types were identified. Combined with the bulk data in the TCGA-LUAD database, DEGs were enriched in pathways such as EGFR tyrosine kinase inhibitor resistance, Hippo signaling pathway, and tight junction. Subsequently, we selected 4 genes (out of 112) with prognostic significance, ANKRD29, RHOV, TLE1, and NPAS2, and used them to construct a prognostic model. The high- and low-risk groups, distinguished by the median risk score, showed significantly different prognoses. Finally, we chose TLE1 as a biomarker based on the relative importance score in the prognostic model. In vitro experiments showed that TLE1 promotes tumor proliferation and migration and inhibits apoptosis.

10.
Front Pharmacol ; 14: 1240736, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781711

RESUMO

Background: Trace elements such as copper are essential for human health. Recently the journal Nat Rev Cancer has put forward the concept of Cuproplasia, a way of promoting tumor growth through reliance on copper. We attempted to conduct a comprehensive analysis of Cuproplasia-related genes in lung adenocarcinoma (LUAD) to explore the mechanism of action of Cuproplasia-related genes in LUAD. Method: Transcriptome data and clinical information of LUAD were obtained from TCGA-LUAD and GSE31210, and prognostic models of Cuproplasia-related genes were constructed and verified by regression analysis of GSVA, WGCNA, univariate COX and lasso. The signal pathways affected by Cuproplasia-related genes were analyzed by GO, KEGG and hallmarK pathway enrichment methods. Five immunocell infiltration algorithms and IMVIGOR210 data were used to analyze immune cell content and immunotherapy outcomes in the high-low risk group. Results: In the results of WGCNA, BROWN and TURQUOISE were identified as modules closely related to Cuproplasia score. In the end, lasso regression analysis established a Cuproplasia-related signature (CRS) based on 24 genes, and the prognosis of high-risk populations was worse in TCGA-LUAD and GSE31210 datasets. The enrichment analysis showed that copper proliferation was mainly through chromosome, cell cycle, dna replication, g2m checkpoint and other pathways. Immunoinfiltration analysis showed that there were differences in the content of macrophages among the four algorithms. And IMVIGOR210 found that the lower the score, the more effective the immunotherapy was. Conclusion: The Cuproplasia related gene can be used to predict the prognosis and immunotherapy outcome of LUAD patients, and may exert its effect by affecting chromosome-related pathways and macrophages.

11.
Int J Biol Sci ; 19(14): 4657-4671, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781037

RESUMO

Numerous mitochondrial abnormalities are reported to result from excessive inflammation during endotoxemia. Prohibitin 2 (PHB2) and phosphoglycerate mutase 5 (Pgam5) have been associated with altered mitochondrial homeostasis in several cardiovascular diseases; however, their role in endotoxemia-related myocardial dysfunction has not been explored. Our experiments were aimed to evaluate the potential contribution of Pgam5 and PHB2 to endotoxemia-induced mitochondrial dysfunction in cardiomyocytes, with a focus on two endogenous protective programs that sustain mitochondrial integrity, namely mitophagy and the mitochondrial unfolded protein response (UPRmt). We found that PHB2 transgenic mice are resistant to endotoxemia-mediated myocardial depression and mitochondrial damage. Our assays indicated that PHB2 overexpression activates mitophagy and the UPRmt, which maintains mitochondrial metabolism, prevents oxidative stress injury, and enhances cardiomyocyte viability. Molecular analyses further showed that Pgam5 binds to and dephosphorylates PHB2, resulting in cytosolic translocation of mitochondrial PHB2. Silencing of Pgam5 or transfection of a phosphorylated PHB2 mutant in mouse HL-1 cardiomyocytes prevented the loss of mitochondrially-localized PHB2 and activated mitophagy and UPRmt in the presence of LPS. Notably, cardiomyocyte-specific deletion of Pgam5 in vivo attenuated LPS-mediated myocardial dysfunction and preserved cardiomyocyte viability. These findings suggest that Pgam5/PHB2 signaling and mitophagy/UPRmt are potential targets for the treatment of endotoxemia-related cardiac dysfunction.


Assuntos
Endotoxemia , Fosfoproteínas Fosfatases , Proibitinas , Animais , Camundongos , Endotoxemia/genética , Lipopolissacarídeos , Mitofagia/genética , Fosfoproteínas Fosfatases/genética , Resposta a Proteínas não Dobradas/genética
12.
Lab Med ; 54(4): 411-423, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-36355716

RESUMO

OBJECTIVE: To establish a novel approach for diagnosing early- and midstage esophageal squamous cell carcinoma (ESCC). METHODS: The tumor suppressor gene phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP)-based miRNA signature was identified using next-generation sequencing and 3 biological online prediction systems. This retrospective study established and validated an ESCC prediction model using a test cohort and a validation cohort. RESULTS: Immunohistochemical staining and real-time quantitative polymerase chain reaction (RT-qPCR) results showed that LHPP protein levels were significantly lower in tissues with early- and midstage ESCC than in adjacent tissues (P < .01). Further, we confirmed that miR-15b-5p, miR-424-5p, miR-497-5p, miR-363-5p, and miR-195-5p inhibited LHPP. These 5 miRNAs were significantly elevated in the plasma of early- and midstage ESCC (P < .05). An ESCC prediction model combining these 5 miRNAs was established. Finally, in the external validation cohort, the model exhibited high discriminative value (sensitivity/specificity: 84.4%/93.3%). CONCLUSIONS: The prediction model has potential implications for diagnosis of early- and midstage ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Estudos de Casos e Controles , Linhagem Celular Tumoral , População do Leste Asiático , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , MicroRNAs/genética , Estudos Retrospectivos
13.
Free Radic Biol Med ; 166: 116-127, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33609723

RESUMO

AIMS: The senescence of alveolar epithelial type 2 (AT2) cells is implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Cigarette smoke (CS) is a strong risk factor for IPF and it is also a pro-senescent factor. Here we aimed to investigate whether and how CS induces AT2 cells senescence via a SIRT1/autophagy dependent pathway. Our results showed that CS extract (CSE) reduced autophagy and mitophagy and increased mitochondrial reactive oxygen species (mitoROS) in MLE-12 cells, an AT2 cell line. The autophagy inducer rapamycin (RAPA) and the mitochondria-targeted antioxidant mitoquinone (mitoQ) inhibited CSE-related senescence and decreased mitoROS. Next, we found that CSE promoted DNA damage, downregulated the nicotinamide adenine dinucleotide (NAD+)/nicotinamide adenine dinucleotide (NADH) ratio and suppressed SIRT1 activity. Activating SIRT1 with its activator SRT1720 attenuated senescence through an autophagy-dependent pathway. The NAD+ precursor nicotinamide mononucleotide and the poly ADP-ribose polymerase (PARP1) inhibitor olaparib also exerted anti-senescent effects by activating SIRT1. Moreover, the results showed that mitoQ and RAPA, in turn, elevated SIRT1 activity by inhibiting DNA damage. Consistent with these results, SRT1720 and mitoQ mitigated CS-induced AT2 cells senescence and lung fibrosis in vivo. Moreover, autophagy in AT2 cells was rescued by SRT1720. Taken together, our results suggested that CS-induced senescence of AT2 cells was due to decreased autophagy mediated by SIRT1 inactivation, which was attributed to competitive consumption of NAD+ caused by DNA damage-induced PARP1 activation. The reduction in autophagy, in turn, decreased SIRT1 activity by promoting mitochondrial oxidative stress-related DNA damage, thereby establishing a positive feedback loop between SIRT1 and autophagy in CS-induced AT2 cells senescence. Consequently, CS-inactivated SIRT1 promoted autophagy-dependent senescence of AT2 cells to induce pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Sirtuína 1 , Autofagia , Senescência Celular , Células Epiteliais , Humanos , Sirtuína 1/genética , Fumaça , Fumar
14.
Antioxid Redox Signal ; 30(4): 520-541, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29486589

RESUMO

AIMS: The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, which is activated by reactive oxygen species (ROS) and repressed by autophagy, has been identified as a novel agent of pulmonary fibrosis. Angiotensin II (AngII), the bioactive pro-oxidant in the renin-angiotensin system, aggravates lung fibrosis. However, the effect of AngII on NLRP3 inflammasome and autophagy in lung fibrosis remains unknown. This study investigates the potential link between AngII-induced autophagy in the regulation of NLRP3 inflammasome/IL-1ß axis in lung fibrosis. RESULTS: In vivo, autophagy and the NLRP3 inflammasome were activated in fibrotic patients and positively correlated with oxidation. Treatment with rapamycin promoted autophagy but inhibited oxidation, NLRP3 inflammasome, and lung fibrosis after bleomycin (BLM) infusion. The autophagy inhibitor 3-methyladenine reduced BLM-induced lung fibrosis and concurrently facilitated NLRP3 inflammasome activation and oxidation in fibroblasts. In vitro, AngII promoted intercellular ROS, hydrogen peroxide, and NADPH oxidase 4 (NOX4) protein levels and reduced the glutathione concentration, thereby leading to NLRP3 inflammasome activation and consequent collagen synthesis. AngII induced autophagy, while VAS2870, NOX4, small-interfering RNA (siRNA), and compound C eliminated AngII-induced LC3B augmentation. Moreover, blocking autophagy with bafilomycin A1 or LC3B siRNA resulted in oxidant accumulation, NLRP3 inflammasome hyperactivation, and collagen deposition. Finally, AngII induced P62/SQSTM1, targeting ubiquitinated apoptosis-associated speck-like protein containing a CARD for degradation, thereby contributing to NLRP3 inflammasome inactivation. Innovation and Conclusion: Autophagy attenuates pulmonary fibrosis by regulating NLRP3 inflammasome activation induced by AngII-mediated ROS via redox balance modulation.


Assuntos
Angiotensina II/farmacologia , Autofagia/efeitos dos fármacos , Inflamassomos/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Fibrose Pulmonar/induzido quimicamente , Animais , Células Cultivadas , Humanos , Inflamassomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Oxirredução/efeitos dos fármacos , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Ratos , Ratos Wistar
15.
Sci Rep ; 7(1): 14369, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084974

RESUMO

MicroRNA-21 (mir-21) induced by angiotensin II (AngII) plays a vital role in the development of pulmonary fibrosis, and the NLRP3 inflammasome is known to be involved in fibrogenesis. However, whether there is a link between mir-21 and the NLRP3 inflammasome in pulmonary fibrosis is unknown. Angiotensin-converting enzyme 2/angiotensin(1-7) [ACE2/Ang(1-7)] has been shown to attenuate AngII-induced pulmonary fibrosis, but it is not clear whether ACE2/Ang(1-7) protects against pulmonary fibrosis by inhibiting AngII-induced mir-21 expression. This study's aim was to investigate whether mir-21 activates the NLRP3 inflammasome and mediates the different effects of AngII and ACE2/Ang(1-7) on lung fibroblast apoptosis and collagen synthesis. In vivo, AngII exacerbated bleomycin (BLM)-induced lung fibrosis in rats, and elevated mir-21 and the NLRP3 inflammasome. In contrast, ACE2/Ang(1-7) attenuated BLM-induced lung fibrosis, and decreased mir-21 and the NLRP3 inflammasome. In vitro, AngII activated the NLRP3 inflammasome by up-regulating mir-21, and ACE2/Ang(1-7) inhibited NLRP3 inflammasome activation by down-regulating AngII-induced mir-21. Over-expression of mir-21 activated the NLRP3 inflammasome via the ERK/NF-κB pathway by targeting Spry1, resulting in apoptosis resistance and collagen synthesis in lung fibroblasts. These results indicate that mir-21 mediates the inhibitory effect of ACE2/Ang(1-7) on AngII-induced activation of the NLRP3 inflammasome by targeting Spry1 in lung fibroblasts.


Assuntos
Angiotensina I/farmacologia , Fibroblastos/metabolismo , MicroRNAs/fisiologia , Fragmentos de Peptídeos/farmacologia , Angiotensina I/genética , Angiotensina II/metabolismo , Animais , Apoptose/efeitos dos fármacos , Bleomicina/efeitos adversos , Células Cultivadas , Colágeno Tipo I/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Inflamassomos/genética , Inflamassomos/metabolismo , Pulmão/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Fragmentos de Peptídeos/genética , Hormônios Peptídicos/metabolismo , Fibrose Pulmonar/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA