RESUMO
Solar-driven photothermal catalytic H2 production from lignocellulosic biomass was achieved by using 1T-2H MoS2 with tunable Lewis acidic sites as catalysts in an alkaline aqueous solution, in which the number of Lewis acidic sites derived from the exposed Mo edges of MoS2 was successfully regulated by both the formation of an edge-terminated 1T-2H phase structure and tunable layer number. Owing to the abundant Lewis acidic sites for the oxygenolysis of lignocellulosic biomass, the 1T-2H MoS2 catalyst shows high photothermal catalytic lignocellulosic biomass-to-H2 transformation performance in polar wood chips, bamboo, rice straw corncobs, and rice hull aqueous solutions, and the highest H2 generation rate and solar-to-H2 (STH) efficiency respectively achieves 3661 µmol·h-1·g-1 and 0.18% in the polar wood chip system under 300 W Xe lamp illumination. This study provides a sustainable and cost-effective method for the direct transformation of renewable lignocellulosic biomass to H2 fuel driven by solar energy.
RESUMO
The conversion of woody biomass to H2 through photocatalysis provides a sustainable strategy to generate renewable hydrogen fuel but was limited by the slow decomposition rate of woody biomass. Here, we fabricate ultrasmall TiO2 nanoparticles with tunable concentration of oxygen vacancy defects (VO-TiO2) as highly efficient photocatalysts for photocatalytic conversion of woody biomass to H2. Owing to the positive role of oxygen vacancy in reducing energy barrier for the generation of â¢OH which was the critical species to oxidize woody biomass, the obtained VO-TiO2 achieves rapid photocatalytic conversion of α-cellulose and poplar wood chip to H2 in the presence of Pt nanoclusters as the cocatalyst. As expected, the highest H2 generation rate in α-cellulose and poplar wood chip system respectively achieve 1146 and 59 µmol h-1 g-1, and an apparent quantum yield of 4.89% at 380 nm was obtained in α-cellulose aqueous solution.
RESUMO
The InP-based quantum dots (QDs) have attracted much attention in the field of photocatalytic H2 evolution. However, a shell should be used for InP-based photocatalytic systems to passivate the numerous surface defects. Different from the traditional InP-based core/shell QDs with Type-I or Type-II band alignment, herein, the "reverse Type-II" core/shell QDs in which both the conduction and valence bands of shell materials are more negative than those of core materials have been well-designed by regulating the ratio of Cd/Zn of the alloyed ZnxCd1-xS shell. The reverse Type-II band alignment would realize the spatial separation of photogenerated carriers. More importantly, the photogenerated holes tend to rest on the shell in the reverse Type-II QDs, which facilitate hole transfer to the surface, the rate-determining step for solar H2 evolution using QDs. Therefore, the obtained InP/Zn0.25Cd0.75S core/shell QDs exhibit superior photocatalytic activity and stability under visible light irradiation. The rate of solar H2 evolution reaches 376.19 µmol h-1 mg-1 at the initial 46 h, with a turnover number of â¼2,157,000 per QD within 70 h irradiation.
RESUMO
Phenyl polyenes comprise a small family of bacterial natural products with broad and potent bioactivities, primarily found in actinobacteria. Here we report the discovery of five new phenyl polyene metabolites, maduraflavacins A-E (1-5), from a rare, marine-derived actinobacteria strain Actinomadura glauciflava NA03286. The structures of these natural products were determined by NMR spectroscopy, HRESIMS, LC-MS/MS, and chemical derivatization. All of these new maduraflavacins feature methyl substitutions at the polyene side chain, and maduraflavacins A-C (1-3) possessed a 1-N-ß-d-glucosamine-(3 â 1)-O-ß-d-glucopyranosyl-(3 â 1)-O-ß-d-glucopyranosyl-(6 â 1)-O-ß-d-glucopyranoside tetrasaccharide moiety via an amido linkage with a phenyl polyene skeleton. Compounds 1 and 2 showed weak antibacterial activities against the Gram-positive bacteria Staphylococcus aureus Sau 16339 and Micrococcus luteus, respectively.
Assuntos
Actinomadura , Antibacterianos , Polienos , Polienos/farmacologia , Polienos/química , Estrutura Molecular , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Biologia Marinha , Actinobacteria/química , Actinobacteria/metabolismo , Micrococcus luteus/efeitos dos fármacosRESUMO
Jumonji domain-containing 3 (JMJD3/KDM6B) is a histone demethylase that plays an important role in regulating development, differentiation, immunity, and tumorigenesis. However, the mechanisms responsible for the epigenetic regulation of inflammation during mastitis remain incompletely understood. Here, we aimed to investigate the role of JMJD3 in the lipopolysaccharide (LPS)-induced mastitis model. GSK-J1, a small molecule inhibitor of JMJD3, was applied to treat LPS-induced mastitis in mice and in mouse mammary epithelial cells in vivo and in vitro. Breast tissues were then collected for histopathology and protein/gene expression examination, and mouse mammary epithelial cells were used to investigate the mechanism of regulation of the inflammatory response. We found that the JMJD3 gene and protein expression were upregulated in injured mammary glands during mastitis. Unexpectedly, we also found JMJD3 inhibition by GSK-J1 significantly alleviated the severity of inflammation in LPS-induced mastitis. These results are in agreement with the finding that GSK-J1 treatment led to the recruitment of histone 3 lysine 27 trimethylation (H3K27me3), an inhibitory chromatin mark, in vitro. Furthermore, mechanistic investigation suggested that GSK-J1 treatment directly interfered with the transcription of inflammatory-related genes by H3K27me3 modification of their promoters. Meanwhile, we also demonstrated that JMJD3 depletion or inhibition by GSK-J1 decreased the expression of toll-like receptor 4 and negated downstream NF-κB proinflammatory signaling and subsequently reduced LPS-stimulated upregulation of Tnfa, Il1b, and Il6. Together, we propose that targeting JMJD3 has therapeutic potential for the treatment of inflammatory diseases.
Assuntos
Inibidores Enzimáticos , Histona Desmetilases com o Domínio Jumonji , Mastite , Animais , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Epigênese Genética , Células Epiteliais , Feminino , Histonas/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Lipopolissacarídeos , Glândulas Mamárias Animais/citologia , Mastite/induzido quimicamente , Mastite/tratamento farmacológico , CamundongosRESUMO
For epidemic prevention and control, the identification of SARS-CoV-2 subpopulations sharing similar micro-epidemiological patterns and evolutionary histories is necessary for a more targeted investigation into the links among COVID-19 outbreaks caused by SARS-CoV-2 with similar genetic backgrounds. Genomic sequencing analysis has demonstrated the ability to uncover viral genetic diversity. However, an objective analysis is necessary for the identification of SARS-CoV-2 subpopulations. Herein, we detected all the mutations in 186 682 SARS-CoV-2 isolates. We found that the GC content of the SARS-CoV-2 genome had evolved to be lower, which may be conducive to viral spread, and the frameshift mutation was rare in the global population. Next, we encoded the genomic mutations in binary form and used an unsupervised learning classifier, namely PhenoGraph, to classify this information. Consequently, PhenoGraph successfully identified 303 SARS-CoV-2 subpopulations, and we found that the PhenoGraph classification was consistent with, but more detailed and precise than the known GISAID clades (S, L, V, G, GH, GR, GV and O). By the change trend analysis, we found that the growth rate of SARS-CoV-2 diversity has slowed down significantly. We also analyzed the temporal, spatial and phylogenetic relationships among the subpopulations and revealed the evolutionary trajectory of SARS-CoV-2 to a certain extent. Hence, our results provide a better understanding of the patterns and trends in the genomic evolution and epidemiology of SARS-CoV-2.
Assuntos
COVID-19/epidemiologia , Epidemias , Genômica , SARS-CoV-2/genética , COVID-19/genética , COVID-19/virologia , Variação Genética/genética , Genoma Viral/genética , Humanos , Mutação/genética , Filogenia , SARS-CoV-2/patogenicidadeRESUMO
We found that an out-of-plane vertical electric field of 1.0â V/Ang helps to maintain the thermodynamic and kinetic stability of monolayer CdI2.The results indicated that the electric field modulates monolayer CdI2 to produce the Mexican-hat electronic state and the giant Stark effect of the vertical electric field on monolayer CdI2 originates from electric field lifting its conduction band. The results based on HSE06 + SOC calculations show that electric field induces strong spin polarization, leading to significant energy level splitting and spin flipping in the valence band. Based on GW0 + BSE, the electric field broadens effective optical response range of monolayer CdI2, the new peak in the optical absorption spectrum under electric field indicates that electric field helps to diminish excitonic effect of monolayer CdI2.
RESUMO
A taxonomic study was carried out on strain yzlin-01T, isolated from Dongshan Island seawater. The bacterium was Gram-stain-negative, catalase-positive, oxidase-negative, rod-shaped, and motile by polar flagella. Growth was observed at temperatures of 10-40 °C, at salinities of 0.5-18â%, and at pH of 6-10. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain yzlin-01T belonged to the genus Halomonas, with the highest sequence similarity to Halomonas malpeensis YU-PRIM-29T (96.7â%), followed by Halomonas johnsoniae T68687T (96.4â%) and Halomonas gomseomensis M12T (96.4â%), and other species of the genus Halomonas (93.4-96.3â%). The ANI and digital DNA-DNA hybridization estimate values between strain yzlin-01T and the closest type strain Halomonas malpeensis YU-PRIM-29T were 77.44 and 21.6â%, respectively. The principal fatty acids were summed feature 8 (consisting of C18â:â1 ω7c and/or C18â:â1 ω6c; 55.7â%), C16â:â0 (20.6â%), C12â:â0 3-OH (6.8â%), summed feature 3 (consisting of C16â:â1 ω7c and/or C16â:â1 ω6c; 5.1â%). The G+C content of the chromosomal DNA was 60.0 molâ%. The respiratory quinone was identified as Q-9 (100â%). Phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, aminophospholipid, and three unidentified phospholipids were present. Combined genotypic and phenotypic data suggest that strain yzlin-01T represents a novel species within the genus Halomonas, for which the name Halomonas dongshanensis sp. nov. is proposed, with the type strain yzlin-01T (=GDMCC 1.3202T=KCTC 92467T).
Assuntos
Ácidos Graxos , Halomonas , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Água do Mar/microbiologiaRESUMO
A transition-metal-free hydrosilylation of allenes is reported herein by using commercially available lithium triethylborohydride (LiHBEt3) as the catalyst. Both mono- and disubstituted allenes could be hydrosilylated with primary or secondary silanes effectively. This reaction represents an environmental and economic method to prepare (E)-allylsilanes in good yields along with decent selectivities.
RESUMO
Flavoprotein monooxygenases (FPMOs) play important roles in generating structural complexity and diversity in natural products biosynthesized by typeâ II polyketide synthases (PKSs). In this study, we used genome mining to discover novel mutaxanthene analogues and investigated the biosynthesis of these aromatic polyketides and their unusual xanthene framework. We determined the complete biosynthetic pathway of mutaxathene through in vivo gene deletion and in vitro biochemical experiments. We show that a multifunctional FPMO, MtxO4, catalyzes ring rearrangement and generates the required xanthene ring through a multistep transformation. In addition, we successfully obtained all necessary enzymes for in vitro reconstitution and completed the total biosynthesis of mutaxanthene in a stepwise manner. Our results revealed the formation of a rare xanthene ring in typeâ II polyketide biosynthesis, and demonstrate the potential of using total biosynthesis for the discovery of natural products synthesized by typeâ II PKSs.
Assuntos
Produtos Biológicos , Policetídeos , Policetídeo Sintases/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Policetídeos/química , Metabolismo Secundário , Produtos Biológicos/químicaRESUMO
BACKGROUND & AIMS: Cardiovascular disease remains the leading cause of death in patients with nonalcoholic fatty liver disease (NAFLD). Studies examining the association of coronary heart disease (CHD) and NAFLD are cofounded by various cardiometabolic factors, particularly diabetes and body mass index. Hence, we seek to explore such association by investigating the global prevalence, independent risk factors, and influence of steatosis grade on manifestation of CHD among patients with NAFLD. METHODS: Two databases, Embase and Medline, were utilized to search for articles relating to NAFLD and CHD. Data including, but not limited to, continent, diagnostic methods, baseline characteristics, prevalence of CHD, CHD severity, NAFLD severity, and risk factors were extracted. RESULTS: Of the 38 articles included, 14 reported prevalence of clinical coronary artery disease (CAD) and 24 subclinical CAD. The pooled prevalence of CHD was 44.6% (95% confidence interval [CI], 36.0%-53.6%) among 67,070 patients with NAFLD with an odds ratio of 1.33 (95% CI, 1.21%-1.45%; P < .0001). The prevalence of CHD was higher in patients with moderate to severe steatosis (37.5%; 95% CI, 15.0%-67.2%) than those with mild steatosis (29.6%; 95% CI, 13.1%-54.0%). The pooled prevalence of subclinical and clinical CAD was 38.7% (95% CI, 29.8%-48.5%) and 55.4% (95% CI, 39.6%-70.1%), respectively. CONCLUSION: Steatosis was found to be related with CHD involvement, with moderate to severe steatosis related to clinical CAD. Early screening and prompt intervention for CHD in NAFLD are warranted for holistic care in NAFLD.
Assuntos
Doença da Artéria Coronariana , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/complicações , Prevalência , Fatores de Risco , Razão de ChancesRESUMO
Aberrant topological organization of whole-brain networks has been inconsistently reported in studies of patients with major depressive disorder (MDD), reflecting limited sample sizes. To address this issue, we utilized a big data sample of MDD patients from the REST-meta-MDD Project, including 821 MDD patients and 765 normal controls (NCs) from 16 sites. Using the Dosenbach 160 node atlas, we examined whole-brain functional networks and extracted topological features (e.g., global and local efficiency, nodal efficiency, and degree) using graph theory-based methods. Linear mixed-effect models were used for group comparisons to control for site variability; robustness of results was confirmed (e.g., multiple topological parameters, different node definitions, and several head motion control strategies were applied). We found decreased global and local efficiency in patients with MDD compared to NCs. At the nodal level, patients with MDD were characterized by decreased nodal degrees in the somatomotor network (SMN), dorsal attention network (DAN) and visual network (VN) and decreased nodal efficiency in the default mode network (DMN), SMN, DAN, and VN. These topological differences were mostly driven by recurrent MDD patients, rather than first-episode drug naive (FEDN) patients with MDD. In this highly powered multisite study, we observed disrupted topological architecture of functional brain networks in MDD, suggesting both locally and globally decreased efficiency in brain networks.
Assuntos
Transtorno Depressivo Maior , Encéfalo , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Tamanho da AmostraRESUMO
A general and efficient palladium catalyzed hydroalkynylation of allenes was developed to produce synthetically versatile (E)-1,3-enyne derivatives with high regio- and stereoselectivity. This catalytic system proceeded under mild conditions and was compatible with a broad range of substrates, especially for allenes without electron-bias groups. This work further broadens the synthetic potential of these scaffolds in organic synthesis and medicinal chemistry.
Assuntos
Alcadienos , Paládio , Catálise , EstereoisomerismoRESUMO
Ochratoxin A (OTA) is one of the most common and deleterious mycotoxins found in food and feedstuffs worldwide; however, Apiotrichum mycotoxinivorans can detoxify OTA. Our results show that A. mycotoxinivorans GUM1709 efficiently degraded OTA, but it caused the accumulation of intracellular reactive oxygen species. The main aim of this study was to identify potential OTA-detoxifying enzymes and to explore the effects of OTA on A. mycotoxinivorans GMU1709. RNA-seq data revealed that 1643 and 1980 genes were significantly upregulated and downregulated, respectively, after OTA exposure. Functional enrichment analyses indicated that OTA exposure enhanced defense capability, protein transport, endocytosis, and energy metabolism; caused ribosomal stress; suppressed DNA replication and transcription; inhibited cell growth and division; and promoted cell death. The integration of secretome, gene expression, and molecular docking analyses revealed that two carboxypeptidase homologues (members of the metallocarboxypeptidase family) were most likely responsible for the detoxification of both extracellular and intracellular OTA. Superoxide dismutase and catalase were the main genes activated in response to oxidative stress. In addition, analysis of key genes associated with cell division and apoptosis showed that OTA exposure inhibited mitosis and promoted cell death. This study revealed the possible OTA response and detoxification mechanisms in A. mycotoxinivorans.
Assuntos
Basidiomycota , Ocratoxinas , DNA Fúngico/metabolismo , DNA Fúngico/farmacologia , Simulação de Acoplamento Molecular , Ocratoxinas/toxicidade , Estresse Oxidativo/genética , Basidiomycota/metabolismo , Perfilação da Expressão Gênica , Expressão GênicaRESUMO
Zearalenone (ZEN) is a potent oestrogenic mycotoxin that is mainly produced by Fusarium species and is a serious environmental pollutant in animal feeds. Apiotrichum mycotoxinivorans has been widely used as a feed additive to detoxify ZEN. However, the effects of ZEN on A. mycotoxinivorans and its detoxification mechanisms remain unclear. In this study, transcriptomic and bioinformatic analyses were used to investigate the molecular responses of A. mycotoxinivorans to ZEN exposure and the genetic basis of ZEN detoxification. We detected 1424 significantly differentially expressed genes (DEGs), of which 446 were upregulated and 978 were downregulated. Functional and enrichment analyses showed that ZEN-induced genes were significantly associated with xenobiotic metabolism, oxidative stress response, and active transport systems. However, ZEN-inhibited genes were mainly related to cell division, cell cycle, and fungal development. Subsequently, bioinformatic analysis identified candidate ZEN-detoxification enzymes. The Baeyer-Villiger monooxygenases and carboxylesterases, which are responsible for the formation and subsequent hydrolysis of a new ZEN lactone, respectively, were significantly upregulated. In addition, the expression levels of genes related to conjugation and transport involved in the xenobiotic detoxification pathway were significantly upregulated. Moreover, the expression levels of genes encoding enzymatic antioxidants and those related to growth and apoptosis were significantly upregulated and downregulated, respectively, which made it possible for A. mycotoxinivorans to survive in a highly toxic environment and efficiently detoxify ZEN. This is the first systematic report of ZEN tolerance and detoxification in A. mycotoxinivorans. We identified the metabolic enzymes that were potentially involved in detoxifying ZEN in the GMU1709 strain and found that ZEN-induced transcriptional regulation of genes is key to withstanding highly toxic environments. Hence, our results provide valuable information for developing enzymatic detoxification systems or engineering this detoxification pathway in other species.
Assuntos
Zearalenona , Animais , Saccharomyces cerevisiae/metabolismo , Transcriptoma , Trichosporon , Xenobióticos , Zearalenona/toxicidadeRESUMO
A practical method for the deoxygenation of α-hydroxyl carbonyl compounds under mild reaction conditions is reported here. The use of cheap and easy-to-handle Na2S·9H2O as the reductant in the presence of PPh3 and N-chlorosuccinimide (NCS) enables the selective dehydroxylation of α-hydroxyl carbonyl compounds, including ketones, esters, amides, imides and nitrile groups. The synthetic utility is demonstrated by the late-stage deoxygenation of bioactive molecule and complex natural products.
Assuntos
Produtos Biológicos , Amidas , Ésteres , Radical Hidroxila , Imidas , CetonasRESUMO
BACKGROUND: Angiotensin-converting enzyme (ACE) inhibitory peptides are potential alternatives to the synthetic ACE inhibitory drugs, but the in vivo antihypertensive effects of most of them have not been confirmed. The tripeptide Leu-Pro-Pro (LPP) is one of the few peptides that have been proved clinically effective in reducing the blood pressure of hypertensive patients and casein is currently its major source. LPP is contained in multiple fractions of zein, and corn gluten meal (CGM) is hence a potential new source of LPP. For this purpose, CGM was fermented with a Lactobacillus helveticus strain and the medium composition was optimized; the decoloration of the resultant hydrolysate was investigated as well. RESULTS: LPP could be successfully released from CGM by fermentation with the strain Lactobacillus helveticus CICC 22536. The highest LPP content and protein recovery of 561 mg kg-1 and 14.92% occurred in the medium containing 20 g L-1 glucose, 15 g L-1 beef extract, 60 g L-1 CGM, 10 g L-1 CaCO3 , 0.5 g L-1 NaCl, and inoculation amount 6%. The supplementation of Flavourzyme® further improved the two parameters to 662 mg kg-1 and 36.94%, respectively. The permeate of the hydrolysate after ultrafiltration through a 5 kDa membrane could be effectively decolored by the macroporous resin XAD-16 without notable protein loss, and its LPP content was further boosted to 743 mg kg-1 . CONCLUSION: CGM is a potential new source of LPP and its ultrafiltered and decolored hydrolysate could be used to develop new antihypertensive functional foods. © 2021 Society of Chemical Industry.
Assuntos
Glutens/metabolismo , Lactobacillus helveticus/metabolismo , Oligopeptídeos/metabolismo , Zea mays/química , Zea mays/microbiologia , Inibidores da Enzima Conversora de Angiotensina/análise , Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Anti-Hipertensivos/análise , Anti-Hipertensivos/isolamento & purificação , Anti-Hipertensivos/metabolismo , Fermentação , Glutens/análise , Oligopeptídeos/análise , Oligopeptídeos/isolamento & purificaçãoRESUMO
Sordarin (1) is a fungal diterpene glycoside that displays potent antifungal bioactivity through inhibition of elongation factor 2. The structures of sordarin and related compounds feature a highly rearranged tetracyclic diterpene core. In this study, we identified a concise pathway in the biosynthesis of sordarin. A diterpene cyclase (SdnA) generates the 5/8/5 cycloaraneosene framework, which is decorated by a set of P450s that catalyze a series of oxidation reactions, including hydroxylation, desaturation, and C-C bond oxidative cleavage, to give a carboxylate intermediate with a terminal alkene and a cyclopentadiene moiety. A novel Diels-Alderase SdnG catalyzes an intramolecular Diels-Alder (IMDA) reaction on this intermediate to forge the sordarin core structure. Subsequent methyl hydroxylation and glycosylation complete the biosynthesis of sordarin. Our work discloses a new strategy used by nature for the formation of the rearranged diterpene skeleton.
Assuntos
Diterpenos , Indenos , Diterpenos/química , Indenos/química , Norbornanos , EsqueletoRESUMO
BACKGROUND: Several studies have shown that N-terminal pro-B-type natriuretic peptide (NT-proBNP) is strongly correlated with the complexity of coronary artery disease and the prognosis of patients with non-ST segment elevation acute coronary syndrome (NSTE-ACS), However, it remains unclear about the prognostic value of NT-proBNP in patients with NSTE-ACS and multivessel coronary artery disease (MCAD) undergoing percutaneous coronary intervention (PCI). Therefore, this study aimed to reveal the relationship between NT-proBNP levels and the prognosis for NSTE-ACS patients with MCAD undergoing successful PCI. METHODS: This study enrolled 1022 consecutive NSTE-ACS patients with MCAD from January 2010 to December 2014. The information of NT-proBNP levels was available from these patients. The primary outcome was in-hospital all-cause death. In addition, the 3-year follow-up all-cause death was also ascertained. RESULTS: A total of 12 (1.2%) deaths were reported during hospitalization. The 4th quartile group of NT-proBNP (> 1287 pg/ml) showed the highest in-hospital all-cause death rate (4.3%) (P < 0.001). Besides, logistic analyses revealed that the increasing NT-proBNP level was robustly associated with an increased risk of in-hospital all-cause death (adjusted odds ratio (OR): 2.86, 95% confidence interval (CI) = 1.16-7.03, P = 0.022). NT-proBNP was able to predict the in-hospital all-cause death (area under the curve (AUC) = 0.888, 95% CI = 0.834-0.941, P < 0.001; cutoff: 1568 pg/ml). Moreover, as revealed by cumulative event analyses, a higher NT-proBNP level was significantly related to a higher long-term all-cause death rate compared with a lower NT-proBNP level (P < 0.0001). CONCLUSIONS: The increasing NT-proBNP level is significantly associated with the increased risks of in-hospital and long-term all-cause deaths among NSTE-ACS patients with MCAD undergoing PCI. Typically, NT-proBN P > 1568 pg/ml is related to the all-cause and in-hospital deaths.
Assuntos
Doença da Artéria Coronariana/terapia , Peptídeo Natriurético Encefálico/sangue , Infarto do Miocárdio sem Supradesnível do Segmento ST/terapia , Fragmentos de Peptídeos/sangue , Intervenção Coronária Percutânea , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Causas de Morte , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/mortalidade , Feminino , Mortalidade Hospitalar , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio sem Supradesnível do Segmento ST/sangue , Infarto do Miocárdio sem Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio sem Supradesnível do Segmento ST/mortalidade , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/mortalidade , Valor Preditivo dos Testes , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do TratamentoRESUMO
Redox tailoring enzymes play key roles in generating structural complexity and diversity in typeâ II polyketides. In chartreusin biosynthesis, the early 13 C-labeling experiments and bioinformatic analysis suggest the unusual aglycone is originated from a tetracyclic anthracyclic polyketide. Here, we demonstrated that the carbon skeleton rearrangement from a linear anthracyclic polyketide to an angular pentacyclic biosynthetic intermediate requires two redox enzymes. The flavin-dependent monooxygenase ChaZ catalyses a Baeyer-Villiger oxidation on resomycin C to form a seven-membered lactone. Subsequently, a ketoreductase ChaE rearranges the carbon skeleton and affords the α-pyrone containing pentacyclic intermediate in an NADPH-dependent manner via tandem reactions including the reduction of the lactone carbonyl group, Aldol-type reaction, followed by a spontaneous γ-lactone ring formation, oxidation and aromatization. Our work reveals an unprecedented function of a ketoreductase that contributes to generate structural complexity of aromatic polyketide.